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Asymptotics & Logarithms
General
1. How to evaluate an algorithm
e Complexity: Speed &Memory
- relationship of input size to the number of steps
- Approximation of the speed of the algorithm
e Identify the performance/complexity of the algorithm
- Describe the asymptotic running time of an algorithm

Notations
2. BigO
e Definition: ¢ gom
- Worst-case run time 'F(\ﬂ
- Upper bound on the asymptotic behavior of a function
- Func growth no faster than a certain rate Fem
O(g(n)) = {f(n) : there exist positive constants ¢ and n, such that
0< f(n) <cg(n)foralln > ne}.
g(n) is an asymptotic upper bound for f(n).
If f(n) € O(g(n)), we write f(n) = O(g(n))
rate/order of growth: highest-order coefficient and low-order terms don’t matter
O(logn) < O(n)
3. Q
e Definition:
- Best-case run time fomy
- Lower bound
- Func growth is no slower than a certain rate €r-how)
Q( h(n)) = {f(n) : there exist positive constants ¢, and n, such that
0=<chn) < f(n)foralln >n,}.
4, O
e Definition: 7_,,:?5(")
- Average-case run time )
- Tight bound ee)
- Func growth similar to this rate -
®(g(n)) = { f(n): there exist positive constants ¢, ¢», and n, such that
0<cign) < f(n) <cygn)tforalln = ne} . .
5. o (Little 0 of g of n) " fn) = O(gn)

e Upper bound but not asymptotically tight
e To see whether one has a smaller big O than a little o
e f(n) is asymptotically smaller than g(n) if f(n)=o(g(n))
o(g(n)) = {f(n): forall constants ¢ > 0, there exists a constant
no > 0suchthat 0 < f(n) < cg(n) foralln = nat .

lim M = 0.
n—oo g(n)

6. [ (little omega of g of n)
e Lower bound but not asymptotically tight
e To see whether one has a bigger omega than a little omega
e f(n) is asymptotically larger than g(n) if f(n)=[1(g(n))
w(g(n)) = 1{f(n): forall constants ¢ > 0, there exists a constant
ny > 0such that 0 < cg(n) < f(n) foralln > ny} .




7. Asymptotic Properties

* Transitivity: f(n) = ©(g(n)) and g(n) = O(h(n)) = f(n) = O(h(n)).

Same for O, 2,0, and w.

* Reflexivity:  f(n) = O(f(n)).
Same for O and 2.

s Symmetry: f(n) = ©(g(n)) if and only if g(n) = O(f(n)).

* Transpose symmetry: f(n) = O(g(n))ifand only if g(n) = Q(f(n)).
f(n) =o0(g(n))ifand only if g(n) = w(f(n)).

8. Notations as comparator
f(n)=0(g(n)) islike a<bh,
f(n)y=Q(g(n)) islike a=hb,
f(n)=0O(gn)) islike a=h,
f(n)=o(gn)) islike a<b,
f(n) =w(gn)) islike a>b.

9. Useful equations

n=0mn") s a<bh

P A

Proof: @ < b < lim " _port & nt = O(nl’)

b

n—oo N

log, n = O(logyn), Va,b > 1
logy, n
logpa 1

log, n

Proof: lim = lim =
n—oc logyn  n—oologyn  logya

"=0d") s c<d

n

< 00

Proof: ¢ < d & "]il)uw ((lj = "'li1>li (%)” —0orl<ooe " =0(d)

° nlggo “;((Z)) = 0= f(n) = o(g(n))? (The 2 and 3 here are refering to the footnote numbers.)
m m n n

o Jim 2 <00 = f(n) = O(g(m)

° nh_r)r;o g((:)) =000 = f(n) =w(g(n))?
_ f(n)
im —= n) = Q(g(n

o fm 2050 f(m) = Qg(n)

o Jim T —ccc0.00) = fn) = (o)

L'Hopital's rule: lim =—or — = lim
Phagl@) 0 2t g(a)

o£&§%=0$ﬂm=MMM)
.g&gg:cemMy¢ﬂm:0MM)
.Jgigg:me(am)ifm)=e@mn
° nlg%o % =ce (0,00] = f(n) = Qg(n))
e lim Ln) =00 = f(n) =w(yg(n))

n—o0 g(n)

flz) 0 o f(x)




10. Logarithms
Notation (in this course): (log n)? = (logn)(log n) and log®® n = log(log n)
log*n = min{i >0 : log¥ n < 1}

11. Compare functions

Short hand notation: f(n) << g(n) < f(n) = O(g(n))
Assume [ and h are eventually positive, i.e. 1Lm f(n) >0 and 111\11 h(n) >0

1 << log*(n) << log¥ n << (logn)® << n << n << nlogn << n'*t << e << nl, for all
positive 7, a., b, ¢

f(n) << g(n) = h(n)f(n) << h(n)g(n)

Proof: lim M = lim f(n) =0
n—oo h(n)g(n) n-oo g(n)

F(n) << g(n) = F()H) << gln)he

h(n)

n n s

Proof: log { lim & = lim h(n)log f(n) = lim hlog lim f = —00, limy, a0 ﬁ =0
n—00 g(]j})h(”) n—oo g(n) n—00 n—oc ( g

f(n) << g(n) and lim h(n) > 1 = h(n)f™ << h(n)9™

h(m) ()
Proof: log ( lim ;(n)) = lim (f —g)logh = —oo, lim,, ﬁ—i =0 Y10

TL—300 h(-n)y(“) n—o00

Logarithms & Summations

12. Logarithms equations
e Notation

exponent exponent
)

L - b logq b='n/

~—>
</ NN « value
base value base

e Properties
In the expression log, a:
* Hold b constant = the expression is strictly increasing as a increases.
* Hold a constant = the expression is strictly decreasing as b increases.
a = howa
log.(ab) = log,a + log, b,
log,a" = nlog,a,

log. a
lo = T,

8o 4 log,. b

log,(1/a) = —log,a,
1

lo = ,

Bo ¢ log, b
alog,,c — Clog,,a )

Iterated logarithm function

x Ig” x
(—oo, 1] 0
(1,2] 1
(2,4] 2
(4, 16] 3
(16, 65536] 4
(65536, 265536] | 5

Limit of logs: /laigl(logb f(x)) = log, (1.21 f(.'r)) (logy(-) is continuous)



13. Different types of series
éalving Corctinions Fmblur\é wslng nwrerical approximotion. .
fizn T=4+)Y4t - tn=nthh =0y | GriumoTic baries,
Tizo Bl = 4% 4% 4% = (3" Jos- Yeomeiric Series,
Tizo X' = 1/U-%) Whew [B1<] , infiniTe beries
@) Show Lo kb =% /U if [xlc]
% WIAD Jobx = oL fdom) fobs
'leAe,sconng
L5 G —ia = O -0n
I Ri =Oixi = Do e
exly Show TPo) 1 /cetktin =T %=1 ftkt D= 1- 1/n



Proof Methods (Induction, Contradiction, & Combinatorial Arguments)
Induction
1. Proof by induction
e Steps
- Proof by Induction [3-step] Basis = Hypothesis = Inductive Step
IF Basis holds (for small numbers: 0, 1, 2, ...)
AND
IF Assume P(n) holds for an arbitrary number
THEN we need to prove the Inductive Step follows from that
P(n+1) holds
THEN we have proven that ¥n, P(n) holds
e Weak induction example
Prove 11 — 6 is divisible by 5, Vn > 1
Let P(n) = 5|(11" — 6) (5 divides 11" — 6)
Base Step: n =1, 11! —6=55|5
Induction Hypothesis: Assume P(n) is true

Induction Step: Check P(n+ 1), 11" —6 =11-11" —6 =11 - (5m + 6 — 6)
55m + 66 — 6 = 55m + 60 = 5(11m + 12) for some m
So 511"+ — 6, P(n + 1) is true.

e Strong induction
1. Basis: show P(ng), P(n1), ... are true
2. Hypothesis: Assume P(k) is true, Vk <n
3. Induction: Show P(ng) A---AP(E)A---AP(n)= P(n+1)
e.g. The Fundamental Theorem of Arithmetic: all integers n > 2 can be expressed as the
product of one or more prime numbers
Proof: Base Step: n. =2, 2 is a prime
Induction Hypothesis: assume all & € [2.n] can be written as the product of one or more
primes
Induction Step:
n+ 1 is prime. Then it can be expressed as the product of itself.
n + 1 is not prime. Then n + 1 = kyko for some integers ky, ko < n + 1. By IH, k1. ko can be
written as product of primes. Thus n + 1 can be written as product of primes

2. Power set

Givere 02 o1 &, powerset 2% every Combinostion, af the olemerdt, Tn b jncluole the
eMPTy b
&b b= A, B, ow The powertet of |51=n hoy Y™ elements.
Y 2fd, Ad.comd. Be. A ALy,
Rosiv 61z, b=TA7, ¥ o 5p,072)
Hyp  Auswme (5] = n\ then |H71] 200
G1op  Nead show for |6l =11l elemem |, Y* 4V =2
Contradiction
3. Proof by contradiction
1. Assume toward a contradiction —°/ P(not P)
2. Make some argument
3. arrive at a contradiction

4. . P must be true

e.g. Prove that there are infinitely many prime number
Proof: Assume that there are a finite number of primes
Let S be the complete set of primes

|et1’*H.r'+l

zeS
P ¢ S because P > x, Vo € S
P is a prime because P is not divisible by any prime, 1 = P mod z, Vo € S
P is a prime but not in S, contradiction.



4. symbol

LIRS R

e Set
N ={1,2,3,...}: all natural numbers
Z=4.,-3,-2,-1,0,1,2,3,...}: all integers
R = all real numbers
(): empty set

P(X)={Y :Y C X}: the power set of X, i.e. the set of all subset of X
e Set operations
Complement: Fix a universe U, AC U, A= CpA = {reU,x ¢ A}

o General notations

Logics:

Negation: =P, ~ P, P, (KTgX: \Inot, \sim)
And: P A Q (IATEX: \land)

Or: PV Q (IBTEX: \lor)

Quantifiers:
3 there exists (IATEX: \exists)
V for all, for any (IATEX: \forall)

Other symbols:

s.t. such that

< implies (IATEX: \Leftarrow)

< if and only if (equivalently) (IATEX: \Leftrightarrow)

Combinatorial Arguments
5. General

Suppose A can happen in n ways and B can happen in m ways.
- Rule of Products: A and B can happen in nm ways.
- Rule of sums: A or B can happen in n 4 m ways.

Factorials n! =n(n—1)(n—-2)---2-1

=7 ways to arrange n distinct objects when order is important

Permutations P(n,r) =n(n—1)---(n—r+1) = (n+1,),

=4 ways to arrange r out of n distince objects when order is important.

Suppose not all objects are distinct. Let ¢; =# objects of the ith kind and t =4 types of objects, then
n!

# ways to arrange n objects is szl(qi!)
Combinations C'(n,r) = (1) = ey
=4 ways to choose a set of r objects from n objects where order doesn't matter. e
&/ TORONTO
6. Method
Method:

© Question: ask a question relating to the formula you would like to prove

@ LHS: argue why the LHS answers the question

@ RHS: argue why the RHS answers the question

You can choose either (easier) side to start.

Usually can be done by thinking about choosing k objects from a set of n (without
replacement) — (}!)

Or by forming n-letter strings from an alphabet of size k (selection with replacement) — k"

ny _ (n—1 ~1

(o) = =) + (")

Question: How many ways can you select & objects from a set of n objects?
LHS: by defintion

RHS: consider a specific object @ in the set

n

x is in the k objects we choose = (}/ f) to choose the remaining

2 is not in the k objects we choose = (”A,l) to choose the remaining
By Rule of sum.



Graph
7. Definition
Graph: G = (V, E), V = {vertices}, F = {edges}.
Subgraph: G' = (V', E’) is a subgraph of a graph G if
andonly if V/'.C V, E' C E and if ¢ = (v,u) € E’, then

Directed graph: a graph where each edge has a direction from
one vertex to another?

Edges (v1,v2) and (vg,vq) are different.

Undirected graph: a graph where each edge doesn’t have a

veViucV’ specific direction

Adjacent vertices: N(v) = {u: (v,u) € E} o

Incident edges: I(z:) _ {(”. 1’_) . (“. _[‘) c E} Edges (v1.v2) and (va,v1) are indifferent.

Degree of a vertex: # of neighbors that a vertex has Undirected graphs can be thought of directed graphs, with
Aside: Vertices are labelled, no pair of adjacent vertices  bidirectional edges.

is the same.

Weighted graph: a graph where each edge is associated with
a value(weight).

% R0 ' (- repreesdostion.
‘ * Aogowm’ List ALy % Aogow&, oty \L‘VXV) CAMD.
©O—@ AP®->0O hoT goool. Since- Spare. groph..

=By, 5200 B PO—>® ' [Tl << V>
I MT = inwerse directeot (1

i ¢ >O->-®-@
AL| OV | OW+B) D+@© |
Al o | o AU ED

8. Calculation

Jd o ® >

In a graph with n vertices, how many edges are there?

At least:
© connected: n — 1

@ not connected: 0

At Most:
@ simple: () = 7"{”2 1)
@ not simple: No upperbound

Number of edge and degrees of vertices (undirected graph): >, deg(v) =2in, where m is
the number of edges

9. Tree
Trees
An wndirectek, Connecreol , pexchic (i
D Chalok, poresct , 4ibling e
v Leafs O
Liptree rooTedk 6 ..
3) depth= # edges from root
Mﬂghﬂ longast pesth 1o leof.
4> Binory Tree - every perert hes fwe Chilolen. .
Theorem
Y 1two of the followmg STpgemerd, ye %wva]uvr
.G is o Tree
2.V fwo verrices in G Cre Connected With o wnigue simple. ot
3. (G 1b Connected buet feimoining Qry eolge disConnects i1
b - - % IE|=|v| -l
S Cis Gojelic & _
b. v - L} aoloting Ry wuedga,crwrz. 0 oyele
10. Probability
oroler ot importpit orler Impor o7}
n \ I
wie replecement ( r): o Ponn = —
i n+r-| ntr—iy!
With replocemerct : ); r(! cn-jl;} nr




Sortin

Recurrences and the Master Theorem

1. MergeSort

TCv) MERGE-SORT(4, p, 1)

SISN!
Q) 2
T%)3
T(VL)“-

Iy} Ln)s

ifp<r
q=1(p+r)/2]
MERGE-SORT(4, p,q)
MERGE-SORT(A4,q + 1,7)
MERGE(4, p,q,r) A = (A[1], 42, ..., Aln])
- p --- Left index
oMy sen) # - Right index

leulat :

2. Recursion tree

Recurrence Tree

* Example2: T(n) = T(n/4) + T(2n/3) + n
n

S
N (z)ﬁ - \lﬂ
16 ‘é‘),
,. > 0= (@
= —D\=\°;L_3_
@)
Tan="T- O o sivgle ?

elemnent :0603 V|>

% T = Otnlogn)

Y, 2 = 0nlogm
s S/ Inest rigrr one oleciole-
T~ T the heigier of the tree , b
/b wd v /W/Q, WY~
/\ /
\ : N T
AN
3 L

3. Substitution

H

Lubtverion (guasy “en onLwer)
“3»@99 " on Onswer onel prove it 51 inluction .
ex)d Revisit N\e@c,éor—r T =¥YTCLnd ¥ 1) +0uny
Bosie  Teb<clloyl =0 5 Ton =4, Tr=5 5 Td<clog) , o pick c>).
JPOTM%N, Worl for velner, < e, hmca, Works for /.
é‘r_elz Tend» & eLnled log Uiy

TumedCThi»l Log(n/y)-rocm
< Cmox Mogr\, - Ch+n
< Cmoxs nlgn + U=Cmoxdn
£ Cmox Nlogin for Cimos > 1.

4. Master Theorem

Theorem

T(n) = aT (%) + f(n), where a > 1,b > 1, f(n) is asymptotically positive

o Case 1: f(n) = O(n'°897¢), ¢ > 0. Then T(n) = O(n!°82) (cost of solving the
sub-problems at each level increases by a certain factor, the last level dominates)

Tum =Tl + TORS + . Tom = work! berindk Tea =hex Demy 5 (5 = | 2 h=logas k= Dtleged

e Case 2. f(n) = ©(n'e: ). Then T'(n) = O(n'*#:%logn) (cost to solve subproblem at

each level is nearly equal)

o Case 3: f(n) = Q(n'°89+<), € > 0 and af () < cf(n) for some ¢ < 1 and n >
(regularity condition, always holds for polynomials). Then T'(n) = ©(f(n)) (cost
solving the subproblems at each level decreases by a certain factor)

Method:
@ identify a and b and compute log; a

@ compare n'°®:% to f(n) and decide which case applies

© don't forget to check the regularity condition for case 3

no
of

-

& TORONTO
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e Example
T(n) =71 (%) 4+ n* (Works for n?logn)
Solution: a=7,b=2, log, 7~ 2.8, f(n) =n? = O(n'°827-¢) for ¢ € (0,1log, 7 — 2)
Case 1, T(n) = ©(nlo8")

T(n) =4T (3) +n*vn
Solution: @ =4,b= 2, log, 4 =2, f(n) = n?*® = Q(n?**) for € € (0,0.5]

Case 3, Check regularity: af (%) =4 (%)2'5 < en?5. Choose ¢ € [\%,1
T(n) = B(f(n)) = 6(n*%)

T(n) = T(y/n) + 1

Solution: let n = 2™, S(m) = T(2™) = T(n)

Then T(2™) = T(22) +1 & S(m) = S () +1

a=1b=2logy1 =0 f(m)=1=m?=60(m" &

Case 2, T'(2™) = S(m) = O(logm), T(n) = O(loglogn) & TORONTO



Heap

Heaps & Heapsort

1. Definition

Definition: A heap is an array A = [ay, as, ..., a,] of elements such that:

Heap shape property: the heap is an almost complete binary tree (all except the last row is
full)
Heap order property:

o Max-heap: Vi, Alparent(i)] > Ali]

o Min-heap: Vi, Alparent(i)] < Ali]

Indexing parents and children (Assume index of array starts at 1)

2. Prop

parent(i) = ||
left(i) = 2i
right(i) =20 + 1
erties
2h <p <2/l 1 & h = |logn]
For a max-heap, the maximum value will always occur at the root

For a min-heap, the minimum value will always occur at the root

Heapsort is ©(nlogn) in time and ©(1) in space (space complexity only considers extra
memory needed excluding input)

Heapsort is an in-place algorithm

Heapsort is not stable

Note: A stable sorting algorithm is a sorting algo that preserves the relative order of the same
value in the previous step

Heapsort

3. Max-Heapify (smaller num to the bottom) (14 9 e

Enforces the heap order property if it is violated D@O®

1: function Max-Heapify(A, 7) Maxcheapify(2. 2) Maxcheapity(A. 4)

2: Compare A[i] with A[2i] and A[2i + 1]

3: if A[i] is smaller then a e

4: swap Afi] <> max(A[21], A[2i + 1]) ©)

5: end if Max-heapify(A, 9) T

6: Recurse downwards, until property is not violated or hit a leaf node

7: end function

Runtime: O(h) = O(logn)

Show the worst-case running time of Max-Heapify is Q2(logn)
Proof: worst case is the minimum element is at the root.
Max-Heapify will terminate when it goes to the leaf

This

takes Q(h) = Q(logn) steps

4. Build-Max-Heap (multiple call max-heapify to move max to the top)
1: function Build-Max-Heap(A, n)

2:
3:
4:

for each i = [Z| : 1 do b the rest are leaf nodes
Max-Heapify(A, i)
end for

5: end function

Runti

me:

e Simple: O(nlogn) (for loop x cost for Heapify)

@ Actual: Time to run Max-Heapify is linear in the height of the node it is run on and most
node have smaller height

o At height h, there are at most (2,['“} nodes.
o height of heap is |logn]|
[logn]

. n . h @
e Runtime: Z [2,&11 O(h) < cn Z Sl == O(n) & TORONT
h=0 h=0

12



A=1[4,1,3,2,16,9.10,14,7.8]

(10 o
s .«.'5‘?’* v Xa
Max- heaplfy A, 5) Max- heaplfy A, 4) e ° °
@ ® @ &
@0®
® ey @OC
909

Max-heapify(A, 3) I\/Iax heapify(A, 2) VToRor Final result: A =[16,14,10,7,8,9,3,2,4,1]

5. Heapsort

1: function Extract-Max(A)
2 Swap A[l] <+ A[A.size()]
3 A.size = A.size-1

4 Max-Heapify(A, 1)

5: end function

1: function Heapsort(4, n)
2 Build-Max-Heap(A, n)
3 for each i =n: 2 do
4 Extract-Max(A)

5: end for

6: end function

Runtime: O(n) + O(nlogn) = O(nlogn)

move the largest num out, others remain in heap shape.
6. Searching time
éeO-Yd'Cmg for 1™ b \232),1- # T Duns %Pwed/’mvw,
Mosimum Y% moox, k™ poos
# Comeneow h-h+ lt-b?h, Ctotely
MWNinimun (v -|.
7. Priority Queue
Prioritny Quewe.  (Lower Bounobs . Firer - first —ou
1 Invert

v Delete [ Dstrect mos

3 Chenge Pru‘ar?‘vj

Heo-P ib The best To Ok 4o

FINDING THE MAXIMUM ELEMENT

Getting the maximum element is easy: it’s the root.
MAX-HEAP-MAXIMUM (A)

1 if A.heap-size <1
2 error “heap underflow”
3 return A[l]

Time: 0(1).

Lower Bawnol = ¥ Comperison ~bosedt Lorting olgorithm o{l wwestricteok ronge # ,Take A (nlogh.
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Quick Sort
General
1. Runtime analysis

e Worst case run time: ©(n?) (the list is already sorted)
o pivot always the largest/smallest. Everytime we get one empty array and one array of size
n—1.Tn)=Tn—-1)+0O(n)
@ Best case run time: O(nlogn)
e pivot always median, T'(n) = 27(n/2) + O(n)
o Average/Expected run time: ©(nlogn)
o T'(n) =T(an)+T(bn)+ O(n), where a +b =1 as we have to run through the full array.

Worst Cose Cnolysis tformo>
Tow = 282 19+ Tin-4)T + By 2es oy
W SubiTitudion To prove s Ot
\H’\*Pw Twe Towecn N < (], n+ld.
bigp. Tume ¢ 8B f42 49T+ 00 L6

beconol, oleriveive po> 4o o i o1 [, 13 end poir,

Plag q=1 e3> Tum < Crvoyein-b £0n < en”

pick_C lorge. enpkfi bo thot This 15 nwéofm‘va

Tm ¢ cf 17 (h-D*T 4800
Txpectost cose pivoT 5 The Limoliest
Tiw = Gl FToTwed + (355 Tep +Ttn-4933 + 0m 6
Subsirtwrion: Tuw ¢ civlegh +b = Otndeg s .
H T +Twd <R =0
6 Tmeh figl'l Top+Ttn -9 340 = q/my Lz Tek> + Biny

Twe V<.

7 Tum £ Ol Ty oklogktb+fn= (w/w)m-rwb/mm,ln&m
Lemme  Show P klsgle <0/ o - L1/
» Corroredy = Pfrer pove 0 Theory, Wees The Iebult To prove. Crother thing.. L ot iAot
Corn %7 Lemmo, i & ondegn - (elgon -r%‘f‘su\))zawlpgy\.,ftatm‘fb' :%L)m £ onbogn +h.
it"." ke logle = L™ klogh + 35 kiogk < Log tnd» 11k + lagr Tnix ke =logn 37 ke - 17k
+ l,ojw;if“/» = logn 17 -3k < 2 nonh TS (3-H% ctn> logh - +n

2. Properties
@ Quicksort tends to have the smallest constant in front of its runtime
@ Quicksort is not stable (although can modify to be stable)

@ Quicksort is in-place (although recursion stores stuff on stack, based on exact definition of
in-place)

@ The idea of a randomized algorithm. Why randomization helps and how to analyz@ Quavessiry or
. ) TORONT!
random algorithm

3. Codes
1: function Partition(A, p, r)
2 x = Alr]
3 i=p—1
4: foreach j =p:r—1do
5: if A[j] < x then
6: t=1+4+1
7 Swap A[i] <> A[j]
8 end if 1: function Quicksort(A4, [, r) > Checking A[l, ..., r]
9 end for 2 if [ <r then > Otherwise no subarray
10: Swap Ali + 1] <+ Alr] 3: p =Partition(A4, I, r) > Split the array by p
11: Return i + 1 4: Quicksort(A, I, p—1) > Recurse on < p
12: end function 5 Quicksort(A, p—1, 7) > Recurse on > p
13: function Randomized-Partition(A, p, ) 6 end if
14: i = RAND(p,r) 7: end function

15: Swap Ali] <+ A[r]
16: Return Partition(A4, p, r)
17: end function

If we randomly shuffle input or choose pivot, we reduce the
chance of getting the worst case scenario. @
The worst case scenario is still O(n?), but the chance is lower.  TORONTC

&
UNIVERSITY OF
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PARTITION(A, p, 1)

1 x = Alr] // the pivot

2 i=p-—1 // highest index into the low side

3 forj =ptor—1 // process each element other than the pivot
4 if A[j]<x // does this element belong on the low side?
5 i=i+1 // index of a new slot in the low side

6 exchange A[i] with A[j] // put this element there

7 exchange A[i + 1] with A[r] // pivot goes just to the right of the low side
8 returni + 1 // new index of the pivot

- Rand-partition: to avoid the worst case take random num from array A, swap it with the left most num.
4. Steps to understand

Quick sort = Y 3B 3 T Y 1w
0 g

[y B
Y O Yy w2y N
+ T
by ©

1) Pick & pivar blandly (We Chare lRft Imost elementy 5

” beporte. @yerriing less than or equel 1o the pivat fo one ik ( Tt 06 MoThar BTe) and
every grexfor thiw the pvoT fo tha ofher bide LTrRXT 0 @ differaw orrey).

%) Repest With ecoh Crros

Viowol Erplainetion -

T T 0
\eft W Y righr

5. example

A =26],33,35,29,19,12,22]

Quicksort(A4, 1, 7)

4=Partition(A4, 1, 7) (number of elements smaller than or equal to the pivot value 26, i.e.
where this pivot should be placed at)

22,19,12,]26, 33,35, 29]

Quicksort(A, 1, 3) and Quicksort(A, 5, 7)

[22],19,12] [33],35,29]

3=Partition(A4, 1, 3) and 6=Partition(A4, 5, 7)

[12,19,[22] [29,[33], 35]

Quicksort(A, 1, 2), Quicksort(A4, 4, 3), Quicksort(A4, 5, 5), Quicksort(A, 7, 7)

[12],19] [29] [35]

1=Partition(A4, 1, 2)

19)

Quicksort(A, 1, 0), Quicksort(A4, 2, 2) %Tl&
[12, 19,22, 26,29, 33, 35]

Comparison-based sorting
6. Lower-bound on comparison sorting

e Any comparison-based sorting algorithm of n nums of unrestricted range cannot do better than Q(nlogn)
7. Counting Sort

e Counting sort assumes elements are integers ranging from 0 to &
e Runtime: ©(n + k) (if K = O(n), then runtime is O(n))

Counting sort uses no comparisons (it uses values of elements to determine the position)

Counting sort is not in-place

Counting sort is stable

Note: A stable sorting algorithm is a sorting algo that preserves the relative order of the same
value in the previous step

15



Input: A[L,...,n], A[j] € {1, ...,
Output: BI[l,...,n] sorted

k}

Create an auxiliary array C[1,...k], recording the number of elements in A with value < x

1: function Counting-Sort(A[l,..
2: for each i =0: k do
3 Clil=0

4. end for

5: for each j = 1:n do
6 ClA[j]] = C[A[f]] + 1
7 end for

8 for each i = 1: k do

Cli] = Cli] + C[i — 1]
10: end for
11: for each j =n: 1 do
12: BIC[A[])] = Alj
13: C[A[j]] = ClA[f]] — 1
14: end for

15: end function

A:o\;ro.») with N #s mnge [0

" Lroble, borting ngor\rrhm‘h
Cul=¢ Y vTo. ]

for =1 ~ Lengrh. TA] % Duny

CTAW) =clALDI+]

for =1~k \ » 70%
ctl=chil+CLi-|].

‘For\] =lengTh W ~ 1., do
BlelAg>1]=AT]) jmw
CTAG) = cTAPI -]

8. Radix Sort (stable sort)

,n], B[1,...,n], n, k)

> # elements in A with value =

> # elements in A with value < =

> iterate A backwards
> C'[A[j]] implies the sorted position of A[j]

Mnge 51091 | -

|>Tsl>,|o|»l>,lo|>o | A
| I¢I [ I%»Iaq | B
IHoJ\/IblaJnl | ¢
HELEIRIE | ¢,

oty YV #4) Jreo A4
Crbefore + C Clerranst

Bl ctAkm)a) = Acg>
>
hSatd A

wled, whoy, am}lhomj blc Qrioys ( hot T -plocey.

@ Radix sort assumes all elements have < d-digits

e Runtime ©(d(n + k)) for d-digit numbers and each digit € [0, %]
o Runtime © (2 (n +2")) for b-bit numbers and r = min(b, [logn])
@ Overall, it sorts in O(n)

@ Radix sort uses no comparisons

@ Radix sort is not in-place

@ Radix sort is stable

Algorithm
1: function Radix-Sort(A, d)
2 for each i =1:d do > Sort least sig digit first
3: Stable sort A on digit i > Relative order in previous step is preserved
4 end for
5: end function
For i=LoR = mup ¢ (12 1Sl |b) 11 1ICo
Cownct Lot on dzigx’r%; 34! il '3 I
i= 7 hums To tort 1y % ¥ s o 25y
|L=I’(>n31,oFd4‘gHs Y ),9;« bn
o= # di%(‘r; bl Lals
One pooy = 0 t+loy . fotel Ocdn rddey . ob= Con;myrr, k O = Ouns.
eg.- looo b-bit #e [

Ng

Qborr = D Lloze g loood por # = lo pebses / nimbesr

l._LT:?I_I & posses / hum

gﬂ";

0L 4imes,  (Groveds pdgo.
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9. Summary about sorting

Given an array of integers, the worst-case time for each algorithm:

Insertion sort: O(n?)
Merge sort: O(nlogn)
Heap sort: O(nlogn)
Quick sort: O(n?)
Counting sort: O(n + k)

© Note 1: & can be larger than n, and it will change the complexity

(Towrnomert free).
Ronelbedect (A, P,r,h

@ Note 2: Won't work with real numbers or any sets S that are not countable (i.e. no

surjective f : N — S ) Only work on finite sets.

Radix sort: O(d(n + k)) (Uses counting sort, so restrictions of counting sort applies)
Bucket sort: O(n?) (Worst case when all numbers in the same bucket)

it p=r thei
retern A LD
9= mvuob—l)ok/t
|¢=°L- p-
it ek

Kuon;z{wTLA,P,q/. n

Time Complexity Space Complexity
Sorting Algorithms | gegt case Average Case Worst Case Worst Case

Bubble Sort Q(N) O(N*2) O(N*2) oM
Selection Sort O(N2) B(N*2) O(N*2) o(1)
Insertion Sort a(N) O(N*2) O(N*2) oM
Quick Sort a(Nlog N) (N log N) 0(N*2) O(N)
Merge Sort Q(N log N) (N log N) O(Nlog N) O(N)
Heap Sort (N log N) (N log N) O(Nlog N) (1)

17



BST & RBT

Selection Sorting

L.

BST

Time complexity for search for min

How many comparisons are necessary to
determine the MIN/MAX of a set of n elements?

MINIMUM(A, n)
1 min = A[l] .
> fori = 2ton O(n — 1) comparisons
3 if min > Ali]

4 min = A[i]

5 return min

2. Properties

o If y is in the left subtree of z, then key[y] < key[z]
o If y is in the right subtree of z, then key[y] > key[x]

3. Runtime analysis

@ In general, if a BST has n nodes, h = O(n). Only if the BST is balanced, h = O(logn)
@ Minimum/Maximum and searching for any arbitrary key O(h)

@ Successor/Predecessor O(h)

@ Insertion/Deletion O(h)

@ Build-BST: O(n?) worst case (chain)

4. Basic operations’ code

1: function In-Order(x) 1: function Pre-Order(x) 1: function Post-Order(x)

2:  if 2 #NIL then 2: if 2 #NIL then 2: if 2 #NIL then

3 In-Order(.left) 3: Process x 3: Post-Order(x.left)

4: Process 4: Pre-Order(x.left) 4: Post-Order(x.right)

5 In-Order(x.right) 5: Pre-Order(x.right) 5: Process x

6 end if 6 end if 6 end if

7: end function 7: end function 7: end function

(1)2, 54, 55, 6,7, 8 (1)6, 5a, 2, 55, 7, 8 (i)2, 55, 54, 8, 7, 6

(i1)2, 54, 5, 6, 7, 8 (i1)2, 54, 7, 6, 55, 8 (ii)5, 6, 8, 7, 5a, 2
Used for sorting Used for rotation Used for deleting & TOR

O(n), since we process each node exactly once

(ii)

1: function Minimum(z) 1: function Maximum(x)

2 while z.left # NIL do 2 while z.right # NIL do
3: x = x.left 3: x = x.right

4 end while 4. end while

5 Return 2« 5 Return 2«

6: end function 6: end function

()6 = 54 — 2 ()6 —-7—38

(i)2 (ii)2—+5—-7—38

O(h), since in the worst case we have to traverse the full height

18



1: function Predecessor(x)
2 if x.left # NIL then
3 Return Maximum(z.left)
4: end ify =parent(z)
5: while y # NIL and @ == y.right do
6: T=1y
7 y =parent(y)
8: end while
9: Return y
10: end function
O(h), since in the worst case we have to traverse the full
height
Predecessor(6) = 5,
5. Search
1: function Search(z, k)
2: if z==NIL or x.key == k then
3: Return =
4: end if
5: if z.key > k then
6: Return Search(z.left, k)
7 end if
8: if z.key < k then
9: Return Search(z.right, k)
10: end if

11: end function .
O(h), since in the worst case we have to traverse the full height

6. Insert
TREE-INSERT(T, z)

O 0 N LB WwWN =

—_— e
W N = O

eoxNaogrene

18:

x = T.root // node being compared with z
y = NIL // y will be parent of z
while x # NIL <  // descend until reaching a leaf
y=x
if z.key < x.key
x = x.left
else x = x.right

Predecessor(5,) = 5q

Zp=y // found the location—insert z with parent y

if y == NIL

T.root = z // tree T was empty
elseif z.key < y.key

y.left =z
else y.right = z

function Insert(7, z)
y=NIL, 2 = T.root
while z #NIL do
y=ua > Find where z should connect
if z.key < z.key then
z = x.left
else
x = x.right
end if
end while
parent(z)=y
if y==NIL then
T'.root = z
else if z.key < y.key then
y.left==
else
y.right=z
end if

19: end function )
O(h), since in the worst case we have to traverse the full height

Build a BS
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7. Delete

Case 1: z is a leaf, delete it.

Case 2: z has one child, delete z and replace @

.

. @

b

with child.

[

Case 3: z has 2 children. (z)
Let y be z's successor, y never has a left subtree ! e

by defintion.

If y has no children, replace z with y
If y has a right subtree, replace z with y and
TRANSPLANT(T, u, v)

replace y with right child

TRANSPLANT

TRANSPLANT(T, u, v) replaces the
subtree rooted at u by the subtree

rooted at v: L ifu.p ==NIL
2 T.root = v
* Makes u’s parent become v’s parent 3 elseif u == u.p.left
(unless u is the root, in which case it 4 u.p.left = v
makes v the root). 5 else u.p.right = v
* u’s parent gets v as either its left or 6 ifv# NIL
right child, depending on whether u 7 v.p =u.p

was a left or right child.

* Doesn’t update v.left or v.right,
leaving that up to TRANSPLANT’s
caller.

TREE-DELETE(T, 2)
if z.left == NIL
TRANSPLANT(T, z, z.right)
elseif z.right == NIL
TRANSPLANT(T, z, z.left)

// replace z by its right child

// replace z by its left child
// y is z's successor

if y # z.right // is y farther down the tree?

>9
B

Ses

TRANSPLANT(T, y, y.right)
y.right = z.right

1
2
3
4
5 else y = TREE-MINIMUM (z.right)
6
7
8
9

// replace y by its right child
// z’s right child becomes

y.right.p =y 7 y’s right child
10 TRANSPLANT(T,z,y) // replace z by its successor y
11 y.left = z.left // and give z’s left child to y,
12 v.0eft.p =y / which had no left child

Note that the last three lines execute when z has two children,
regardless of whether y y is z’s right child.

8. example
Binery booroh, Troes,
A binory Trea Wit popert ke Lo ¢ keycpiors ey trigier>
beorch key Oy
506t o ot ondl go lefy or right
Twserr kg 0Lk
beerch for i pnol et it oy o leof
Rualdl B5T CAT 1 n1y Oy
For i=lun , nserr (AU
Sort BT
Lo odler - lefr = print = riger




Show if a BST node has 2 children, then the successor has no left child and the predecessor has no
right child

Proof: Assume that node x has 2 children, and its successor s (minimum element of the BST rooted at
x.right) has left child I, s.key > l.key > x.key, then [ is the successor of x. Contradiction

Similarly, if its predecessor p (maximum element of the BST rooted at x.left) has right child r, we have
x.key > r.key > p.key, r is the predecessor of x. Contradiction.

BST-sort works by constructing a BST out of the array and then calling In-Order traversal. What is the
best and worst case?

Solution: In-Order always take ©(n)

Worst case: array is already sorted, BST is a linked list

Each BST at position i insert takes O(7), summing up gives Z Oi) = O(Z i) = O(n?)
i=1 i=1
Best case: BST is always perfectly balanced, height is always O(log)

ZO(l()g/) = O(Z logi) = O(Zl()gu) = O(nlogn) & TORONT
i=1 i=1 i=1

9. NIL
e Absence of a node

RBT

10. Properties
Red Black Tree is a Binary Search Tree with the following additional properties:
e Every node is either red or black
@ The root is black
o All leaves (NIL) are black
e If a node is red, both its children are black
e For all nodes, all paths to all leaves have the same black-height (number of black nodes on
path to a leaf, not including itself, but including NIL)

11. Balanced and run time
e Balanced
By constraining the node colors on any simple path from the root to a

leaf, red-black trees ensure that no such path is more than twice as long
as any other, so that the tree is approximately balanced
o All read-only operations (e.g. traversals) are all the same as BST
@ Rotation

e Runtime
@ RB Treees are balanced h = O(logn)

12. Definition

*-Height-of the:node: #edges in longest path to leaf

* Black-Height of node x, denoted bh(x) -- number of black nodes on
any simple path from, but not including, a node x down to a leaf
N~

* Black-Height of a RBT: black-height of its root Y=4, bb=2
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13. Operations and rotations

Operations

* MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR,
SEARCH are same as in BST

*Insert, delete require ROTATION to fix the properties
when they are violated
* To restore these properties, we must change the colors of
some of the nodes in the tree and also change the pointer
structure.

Rotations

Left-Rotate(T’, )

Counter Clockwise

Clockwise

Right-Rotate(T, y)

Left-Rotate(7’, 3)

Counter Clockwise

e @ Clockwise

Right-Rotate(7", 7)

LEFT-ROTATE(T, x)

1

0NN b W

10

12

y = Xx.right // sety

x.right = y.left

if y.left # T.nil
y.left.p = x

y.p = Xx.p

// turn y’s left subtree into x’s right subtree

// link x’s parent to y

if x.p ==T.nil
T.root =y

elseif x == x.p.left
x.p.left =y

else x.p.right = y

y.left = x

xX.p =)

// put x on y’s left

assumes that x.right != T.nil and that the root’s parent is T.nil.

LEFT-ROTATE(T,x) X~ ®
y = x.right y= @

x.right = y.left A
if y.left # T.nil L —
y.left.p = x

0NN N b W -

O

10
11
12

y.p=Xx.p

if x.p == T.nil
T.root =y

elseif x == x.p.left
x.p.left =y

else x.p.right =y

y.left = x
x.p=Yy

b & — @

left-rotate (5)
S
@

10

oo
R
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14. Insert

RB-INSERT-FIXUP(T, 2)

1 while z.p.color == RED

oo R W

10
11
12
13
14
15

ifz.p==2z.p.p.left
y = z.p.p.right
if y.color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED

zZ=2z.p.p
elseif z == z.p.right
z=2z.p

LEFT-ROTATE(T, z)
z.p.color = BLACK
Z.p.p.color = RED
RIGHT-ROTATE(T, z.p.p)
else (same as then clause
with “right” and “left” exchanged)

16 T.root.color = BLACK

15. Delete

HDolete #

00«52@ X’s eswuj@ s @
@ ,xrs 93»)“@@?5', bo‘\'ﬂ/\@'s Obuﬂob% oq:(‘

& %'s sbin@is@, W5 fefe child @, row chotd @

& x's s‘vb\i-ﬁ@rs’; @g Frot catd @
wst+ 0O Uogh)

// case 1
// case 1
// case 1
// case 1

// case 2
// case 2
// case 3
// case 3
// case 3
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Hash Table (Hashing)
LinkedList
1. Properties
* Objects arranged in a linear order.
*  Order is determined by a pointer in each object.

+ A flexible representation for dynamic set.
Supporting all the dynamic-set operations (<

)
10 | @ 20 | & 30
Linked List
2. Different types
Linked lists come in several types: ’ 10 ’ H 2 H 30 ‘ ‘

* Singly linked: each element has a next attribute but not a prev
attribute.

* Doubly linked: each element x has the following attributes”
*  Xx.key
* x.next: the successor of x, NIL if x has no successor so that it’s the tail
* x.prev: the predecessor of x, NIL if x has no predecessor so that it’s the head

L. head points to the first element of the list, NIL if the list is empty.

Linked lists come in several types:

* Sorted: the linear order of the list follows the linear order of keys
stored in elements of the list.

* Unsorted: the elements can appear in any order.

 Circular: the prev pointer of the head of the list points to the tail, and
the next pointer of the tail of the list points to the head.

3. Searching

prev  key  next

N
L.head —>{ /9] T J16] T [4] <L [1]/]

LiST-SEARCH finds the first element with key & in list L by a linear search.

LIST-SEARCH(L, k)

1 x = L.head

2 while x # NIL and x.key # k
3 X = X.next

4 return x

4. Insert
There are two scenarios for inserting into a doubly linked list:
1. inserting a new first element: LIST-PREPEND, O(1)
2. inserting anywhere else: LIST-INSERT, 0(1)

prev  key  next
/
Liheat —Z A ETE S C e
L.head —>| /25| T [ o] 7L [16] T [4] T [1]/]

LIST-PREPEND (L, x)

x.next = L.head

X.prev = NIL

if L.head # NIL
L.head.prev = x

L.head = x

[ S S
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To insert elsewhere, LIST-INSERT “splices” a

LIST-INSERT(x, y)

new element x into the list, immediately 1 Xx.next = y.next
following y. Since the list object L is not 2 Xx.prev =y
referenced, it’s not supplied as a 3 if y.next # NIL
parameter. 4 y.next.prev = X
5 y.next = X
e.g., inserting 36 after 9.
Leat —Z BT T e LA
Lohead —{ 725 F [o [ Ve oo F—=L 16 e [e[ L [1]]
5. Delete
LIST-DELETE(L, x)
Given a'point to X, LIST-DELETE removes x | if x.prev # NIL
from L in O(1) time. 2 X.prev.next = x.next
3 else L.head = x.next
4 if x.next # NIL
e.g., deleting 4. 5 X.next.prev = X.prev

L.head —>{/]25] T o] <=L [36] 1< 1] 1L 4] 1= [1]/]
Livead —{Z B C L8 LT

To delete an element just given a key, first call LIST-SEARCH, then call
LIST-DELETE. This makes the worst-case running time 0(n).

6. Runtime

Comparison

Linked List, Array, BinarySearchTree @
(operation by key)

?, cotid {)nie:\ Delete Search Space
Uin=Shete S By index | By key
Array 4 UU\J OU\J\ O Cj) O CN} O Cf\))
_BST |Average| O (I} ) clgn) Oc lgf\)} o )
Worst } O)| O (W) O (N) ’
Linked Coorch
List O (N'j OCN)FMQ— O CN) 0 CN)
Y oW,
Hash Tables

7. Definitions

Let U be the universe, K C U a set of keys. T a table of size m with indices {0, ...,m — 1}
A hash function h — {0, ...,m — 1} maps objects in the universe to the indices (hashes key

ke Kt

o index h(k))

Good hashing scheme:

@ Simple uniform hashing: any given element is equally likely to be hashed into any of the m
slots.

@ Good mechanism for collision resolution (since m < |U|, there could be collision)

8. Hash function types
e Division method

Division method: divide the element with the size of
the hash table and use the remainder as the index of
the element in the hash table.

h(k) = k mod m .

Example: m =20 and k = 91 = h(k) = 11.

Advantage: Fast, since requires just one division operation.

Good choice for m: A prime not too close to an exact power of 2.
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e Multiplication method

Choose constant A in the range 0 < 4 < 1.
Multiply key k by A.

Extract the fractional part of kKA.

Multiply the fractional part by m.

Take the floor of the result.

SARE I S .

Put another way, h(k) = |m (kA mod 1)], where kA mod 1 = kA — |kA] =
fractional part of kA.

Disadvantage: Slower than division method.
Advantage: Value of m is not critical. Can choose it independently of A.

Collision Resolution
9. Open Addressing

Use hash function of the form h(k,), try to insert & at h(k,0), h(k,1), ..., until we find an
empty slot

Linear probing: h(k,i) = (h'(k) + i) mod m

Quadratic probing: h(k,i) = (h'(k) + c1i 4 c2i®) 1od m (slightly better performance, but
still m probing sequences)

Double hashing: h(k,i) = (hi(k) 4 tha(k)) mod m
@ No clusters
@ ha(k) must be relatively prime to m (ged(ha(k),m) =1) for all k
@ Can choose m prime, hy(k) < m, Vk

e O(m?) different probe sequences

UNIVERSITY OF

ze’roRONTO
Taserr vy | k=¥

hp O =V mod 1| =0, Collision Wit $3

" Whe LeLonalory hogn funcrion,

S ho ) 2)exd mook b = bb ok b = )., Lo Probing eT@)P Y Liort oo ks O

Check Tol Y, ocCupided. b-j Nwmber 2%,

> Check ioks &, empty < doks b hot Vodue ¥

Runtime
10. runtime
Performonce -
lew«)y»mg PN

Lineor probing : < (l+ 1/ (-a.
Dol 2 ha%ng: G h () [ a-20).

Number of Probes

| Unsuccessful
[ Linear Probing—]

/ Successful

Double Hashing

1.0

Load Factor

0.5¢ISC 235 Topic 5 1.0 36
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Dynamic Programming
1. definitions

Simple defintion: Efficient recursion for solving well-behaved optimization problems

Optimization problems: trying to find an optimal solution given some constraints (often
discrete problems)

Used for problems with the following properties

@ Optimal substructure: optimal solutions incorporate optimal solutions to related
subproblems

e Overlapping subproblems: solving the same subproblems over and over again
(Memorization exploits this redundancy)

In general, DP good for tasks with small but repetitive search spaces

Fibonacci series: F,, = F,,_1 + I,,_o with | = I', = 1. Each value F; needs to be solved as
subproblem for Fj;;1 and F; 5. Similarly, Pascal’s triangle.

String/Array algorithms: longest common subsequence, longest increasing subsequence, longest
common substring, edit distance, interleaving strings, balanced array, etc.

Graph algorithms: Bellman-Ford, Dijkstra (to be discussed later in the course).

Backpropagation: compute the gradients for one layer at a time starting from the last layer. When
calculating gradients for layer i, use the result from layer ¢ + 1.

Viterbi algorithm: with a hidden markov model defined by (S, O, P(si=o = s;), P(S¢41 = $j|8: = 8i).
P(Oy|s¢ = s;)), find the most probable state path given the output path. Used for part-of-speech
tagging, speech recognition etc. in NLP.

&
UNIVERSITY O]

More examples on Leetcode, but in the course, backtracking is not discussed and & TORONT
a correct working code is not enough.

2. Methodology

© Visualize Examples (start small, with base cases, and gradually increase the problem size)

@ Determine how the problem exhibits optimal substructure, i.e. characterize the structure
of an optimal solution

© Find a relationship among subproblems, i.e. defining the rule of an optimal solution
recursively in terms of the optimal solution to subproblems

@ Compute the value of an optimal solution, typically bottom-up solving subproblems in
order and use memorization

© Construct the optimal solution from the computed information (if you want more than just
the value of the optimal solution, you can still use memory)

3. Optimal Substructure proof
e Definition

An optimal solution contains within it optimal solutions to subproblems.

E.g. shortest path problem: find shortest path between
nodes in a graph without reapting an edge.

ShortestPath(A,D)=A — E — D
ShortestPath(A,E)=A — E
ShortestPath(E,D)=F — D

Note: Optimal substructure does not mean you can combine any optimal solutions to
subproblems to arrive at another optimal solution

E.g. ShortestPath(A,C)=A — B — C, and ShortestPath(C, E)=C — D — E,
ShortestPath(A,E)# ShortestPath(A,C) + ShortestPath(C, E)
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e Steps
Proving Optimal substructure (not required)

© The solution to the problem requires some choice. Suppose an optimal solution contains
choices k, this breaks the problem into 2 subproblems.

@ Argue that you would now want to solve these subproblems optimally because if you
didn’t, the original solution wouldn’t be optimal (Proof by contradiction)

Recurrence relation:

Alisj, ] base case
1y ]y =
& min / max{A[subproblem 1] + A[subproblem 2] + - - - ++ cost of breaking problem}

Runtime: ~ ((n#*subproblems per choice)r)(#choices) (ot necessarily true, use code to analyze)
For bottom-up approach, runtime is obvious. %

4. Problem templates
® Answer parts
- Optimal substructure: Simply describe the method to divide the subproblems/subgroups, e.g. cut
from where, to divide the total number of stuffs into how many groups, etc.
- Recursive relationship among subproblems: fix one group (suppose we know one group’s optimal
solution), then calculate the other side’s optimal solution.
- Code: Usually two loops, the outer loops iterate from 1 to n as the total number of stuff, inner
loop considers all possible combinations.
e Rod cutting problem

Given: a rod of length n and a table of prices p; for each rod length i = 1,...,n
Goal: Determine maximum revenue you can obtain from the rod by cutting it into various size
pieces and selling them

Visualization: . .
Suppose we have a rod of length 4 with prices:

length |1 2 3 4
price ($) [1 5 8 9

Possible cuts:
[1,1,1,1]: $4; [2,2]: $10 (optimal);
[1,3]: $9; [1,1,2]: §7; [4]: $9

Naive solution: Try all possible cuts.
This will be O(2"), since you either cut or not (2 possibilities for n — 1 spots)

Optimal Substructure:

Suppose in the optimal solution, we make a cut at position & and we have 2 rods

The optimal solution must now contain the optimal way to cut the 2 sub-rods. If not, we could
replace them with the optimal sub-solution to obtain a better optimal solution.

.. this problem exhibits optimal substructure

Recursive relationship among subproblems:

Let r, be the maximum revenue you can get from a rod of length n

" = max(Pn, 71 + Tno1,72 + Tn2, .y Tn—1 + 1) = max (rp +r,_x)
ke(l,n]

We can simplify things. Instead of considering 2 subproblems, we fix the length of the rod on

one side. r, = max (pg + 1)
ke(l,n]
Naive implementation: DP with bottem up approach (©(n?)):
function Rod-Cut(p, n) function Rod-Cut(p, n)
if n == 0 then r[0,..,n] =0
Return 0 for each j =1:n do
end if qg= —00
q=—00 foreachi=1:; do
for each i = 1:n do q = max(q, plt] +r[j — i)
¢ = max(q, p[i] + Rod-Cut(p,n — 7)) end for
end for rli] =q
end function end for

However, we can make it more efficient by adding a memory. €nd function
This gives a top-down approach.
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=price of rod with length i
r;=optimal revenue of rod with length 7

j=lp=1r =max(l) =1
j=2p2=5pi+r=1+1=2, ro =max(5,2
=3 p3=8 p1+ro=14+5=6,p2+r =5+
J=4ps=9p+r3=1+8=9, pp+ro=5+
ry = max(9,9,10,9) = 10

) =
1= 6 rg = max(8,6,6) = 8
5=10, ps+r =8+1=9,

Typesetting problem

Typeset words of length wy, ..., w,, into lines of length L assuming Vi, w; < L.
Length of a line consisting of words i to j is I(i, j) Zwk +(—1)

We want to minimize the amount of spaces on the RHS across all lines
The "raggedness" is defined as r(i, j) = (L — 1(4,))?

Optimal Substructure:
Suppose the optimal solution has words w; to w; on line k
We now have 2 similar subproblems: optimally typesetting words wy, ..., w;—1 and w41, ..., wy,

Recursive relationship among subproblems:
Let R[i]= the minimum raggedness to typeset words wy, ..., w;

Rl = {(),.if i=0

minjeoq.(+1,0) <z (Rl + 7+ 1,4)), if i >0
where r(j +1,i) = (L —1(j + 1,1))>.

Implementation:

function Typeset(L, 1)
R[0,...,n] =0
for each i =1:n do
R[i] = o0
foreach j =0:i—1do
if I(j+1,i) <L then
r=(L—1(+1,i)?
RIi] = min(R[i, R[j] + 1)
end if
end for
end for
Return R[n]
end function
Runtime: O(n?)
Space: O(n)



Greedy
1.

Greedy Algorithms

Definition & Algorithms

Simplified Definition: an algorithm where locally optimal decisions lead to a globally optimal
solution

Idea: when making a choice, take the one that looks the best right now. Local optimality leads
to global optimality.

Note: Greedy is not always optimal, but good as approximation algorithms

Properties:
o Greedy choice property: the optimal solution agrees with the first greedy choice
@ Smaller subproblems: after making the greedy choice, the resulting subproblem reduces in
size

@ Optimal substructure: an optimal solution contains optimal solutions to subproblems

* 2 principles/properties
* Optimal sub-structure

* Greedy Choice: a global optimal is reached by doing local
greedy choices

2. Types of greedy

There are only two types of greedy problems you need to consider in this course:
@ Car building: rearrange the full set of tasks to minimize the total penalty
@ Scheduling: find a feasible subset of tasks to maximize the profit

3. Proof of correctness

Notation:

Optimal solution: J = ji,j2,..., jn

Greedy solution: G = g1, g2, ..., Gn

Jji and g, are indices into some object set. If the task set 1" = {t,,¢2,13} and .J = ji, j2, j3, the optimal
ordering is t;,.,t,,.t},

We treat ./ and (& as ordered sets and use set operations J\{j1} = j2.J3, -, Ju, {0} UJ = JosJ1s ooy Jn

Proof of correctness:
Q let G=g1,99, ... gn
© First greedy choice: 3J = j1,...,jn St. g1 = Jj1
© Smaller subproblems: After making choice j; = g1, we are left with a smaller subproblem

© Optimal substructure: we must solve the subproblem optimally for the original solution to be
optimal. J\{j1} = j2,J3, ..., jn must be an optimal solution to the subproblem

© Recurse the argument to conclude j» = g2, j3 = ¢ 2 onwvesry o
g J2 =02, J3 = g3 & ToReTe

.. 3.J optimal solution s.t. J =G

4. Comparison

Greedy Approach Dynamic Programming
Choosing the best option that
Main Concept gives the best profit

for the current step
Only if we can prove that
Optimality local optimality leads to Gives an optimal solution
global optimality

Optimizing the recursive
backtracking solution

Polynomial, but usually

Ti C lexit Pol ial
tme Lompexity olynomia worse than the greedy approach
More efficient Requires a DP table
Memory Complexity because we never look back to store the answer of

to other options calculated states

Dijkstra and 0/1 Knapsack and
Examples - . .
Prim’s algorithm Longest Increasing Subsequence
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5. Binomial distribution

n X _n—x n' X _h—Xx
P(x)= P T Sal e

where

- (n—x)!x!

n = the number of trials (or the number being sampled)
x = the number of successes desired

p = probability of getting a success in one trial

g =1 —p = the probability of getting a failure in one trial

6. Problem templates
e Answer parts

Devise a greedy algorithm

Prove the greedy choice property

Prove the problem is reduced to a smaller subproblem after making the first greedy choice
Prove optimal substructure: (If we remove the first greedy choice from optimal solution, the
the remaining solution must be optimal for a subproblem)

e Car building

Sort in descending order, build from high penalty to lower [O(nlogn)]

Let J (1~n) be the optimal solution, G (1~n) be the greedy solution.

If j 1 =g 1 then done.

Supposej 1!=g 1.

Since must build all cars at the end, so g must be somewhere in J.

By definition of greedy choice, penalty jl<=penalty gl=penalty jm for m > 1.
Let J* be the set of solutions that j 1 and j_ m swapped.

According to the equation of penalty write P(J) and P(J).

Find the relation between them by using P(J) to subtract to rewrite P(J*), proving that P(J’) <=
PQ).

Then, J’ is an optimal solution that agrees with the first greedy choice.

Simply describe what will be the left occasion if we built a car on day one.

Jis optimal withj 1 =g 1, J’=J/j_1 is not optimal and acts as a subproblem.

N from n2 as a new optimal solution that better than J’.

H as j1+N (new optimal solution plus the first greedy choice) solution set.
Prove that P(H) = p_j1+P(N) is better than same plus P(J’) hence P(J).

Proved by contradiction.

e scheduling

Given T' = {ty,t,...,t,} a set of tasks, D = {dy,...,d,,} a set of corresponding deadlines in
units of days, @ = {p1,...,pn} a set of corresponding profits if we complete the task by the

deadline.

Each task takes exactly 1 day to complete. A feasible set is a set of tasks s.t. it is possible to
complete all tasks before their deadline
Goal: Find a feasible set of tasks s.t. their profits 21)_,- are maximized.

e.g.

Jjed
i1 2 3 4 Invalid solution: {b.d}, both needs to com-
tila b ¢ d pleted on day 1
{2 1 2 1 Solution 1: {d}, profit 30
p; | 50 10 15 30 Solution 2: {d.a}, profit 30 + 50 (conti next page)
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Devise a greedy algorithm assuming you have a function Feasible(J) that runs in constant time
and check if .J is a feasible schedule

Sort tasks in order of decreasing profit. J = {}, iterate through the tasks, if Feasible(.J U {j}),
then J = JU{j}.

Prove the greedy choice property:

Let J = j1,j2, .-, Jm be an optimal solution.

Let G = g1, g2, ..., gm be the greedy solution.

Note that the sequence of selection doesn’t matter here. We need to finish all tasks in J and
all tasks in GG before the corresponding deadlines. If g; € J, then done

Assume g1 ¢ J, then p,, > pj, Vj € J by construction of g

Construct J' = J\{j} U{g1} for any j € J s.t. J' is feasible.

L P(J') = P(J) — P({j}) + P({ar}) = P(J) — pj +pyy = P(J)

.. J" is optimal, and J is not the optimal solution. Contradiction. 5, _vavesny or

Prove the problem is reduced to a smaller subproblem after making the first greedy choice:

Start with 7' = {¢1, ..., t, }, make first greedy choice g, with profit p,, where p,, > pi, Vk € {1,...,n}
Now, we have T'\{t,, } possible tasks remaining, but with less days to complete them

So we have a subproblem 7".

Also, there are possibly some tasks that is now impossible to complete because we don't have enough
days and we can remove them. 77 C T'\{t,, }

|T"| < |T'| — 1< |T|, T" is a strictly smaller problem

Prove optimal substructure:

Let J = ji,j2, .-y jm S-t. g1 € J be an optimal solution

Let J" = J\{g1} be a solution to the subproblem

Assume that .J is optimal and .J' is not

Let S be an optimal solution to the subproblem P(S) > P(.J’) and construct J” = {g1}US. J" is
feasible because we can just do g, first and S is feasible for the subproblem.
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Amortized Analysis
General
1. Definition
e Show that although some individual operations may be expensive, on average the cost per operation is
small.
Guarantee the average performance of each operation in the worst case.
Give a much tighter bound on the true cost of using the data structure than a standard
worst-case-per-operation bound.
Aggregate Analysis
2. Definition
e Determine an upper bound T(n) on the total cost of a sequence of n operations.
e Worst case: the average cost (amortized cost) per operation is T(n)/n
3. Example
e Stack
- Scenario

PUSH(S.x): O(1) each = O(n) for any sequence of n operations.
‘li()l)é_) 0O(1) each = O(n) for any sequence of n operations.
MULTIPOP(S. k) —
" while not STACK-EMPTY(S) and k > 0
Por(S)
k =k—1
- What is the largest possible cost of a sequence of N-stack operations, starting from empty stack?
- Simple-worst-case-bound:
O(n)*n = O(n"2)
- Aggregate analysis:
Any sequence of push/pop/multi pop on an initial empty stack cost at most O(n)
T(n) = Tpop(n) + Tpush(n) <= 2Tpush(n) <= 2n = O(n)
Therefore, the amortized cost per operation = T(n)/n = O(1)
e Binary Counter

r . N

- Scenario
* < k=bit binary counter A[0:k — 1] of bits, where A[0] is the least significant bit
and A[k — 1] is the most significant bit.
*  Counts upward from 0.
INCREMENT(A) <=~ . — bH - ;i Totod
1 i=0
7 o
2 whilei < A.length and Afi] == 1 B (k) worst cess
3 Ali] =0 .
3 i[;]i+l i oall v oY = 1
5 ifi < A.length .
6 Ali] = 1 Nouve goluTiom @

B -k for novpar

- Amortized Analysis

- Initialization: all n bits are set to 0, so n bit flips cost

- Increment Operation:
Accounting Method

4. Definition

Assign different charges to different operations
Amortized cost = amount we charge an operation
When amortized cost > actual cost, store the difference on specific objects in the data structure as credit.
Use credit later to pay for operations whose actual cost > amortized cost

Differs from aggregate analysis:
- Different operations can have different costs in accounting method



5. example

e Stack
v
operation actual cost  amortized cost
PUSH 1 % — >¢1 — push
Por 1 0 1 — QC-Q_P091+ =0 pay Pp
MurTiPOP  min(k.s) 0
& Can we olloceste
Charge($) | Credit in total 100 ﬂ on PU\Sl’l qu’-)
Push(A) = 1
Push(X) o2 9‘2 A; I’\‘(S V\D+ ) rt‘\ju-bﬁbdl
Push(W) o 3
o 0 |2 M= 2un= Deu
Multipop (S,2) D 0 TC ) O )\
LS aMe>tized cost Peq &fﬁ:c@)

- Needs to ensure the credit in total is non-negative
- Design a cost-credit model to satisfy the requirements
e Binary counter

A Brnl cost | Awortined cosv | aredat
o—>1 a 2 1
1—=0 1 0
A[3] A[2) A[1]) A[0) c&wge CHedt+S
0 0 0 0 INCREMENT(A)
p) = 1 1 i=0
R /1 2 whilei < A.length and A[f] == 1
0 0 q 0 2 2%0 3 Ali] =0
4 i=i+1
0 a | 1% 2 Q 5 ifi < A.length
6

0 d 0 ] Ali] =1

foor N— 2NCR - _(_(00221/\—:' OCM)
A nohined  Cost per SfCkootivy OC1>

6. Dynamic Tables
e Hash table
- Scenario

* Don’t know in advance how many objects will be stored in it.

* When it fills, must reallocate with a larger size, copying all objects
into the new, larger table.

N
P
#item 1|22 | s 6 | 2| & [P
Table size 1|4 4| & & g | & 16
»[INSERTcost |1 | S| 2| 1 | &= 1 1 1 P
G () 4 2 )

- Answer
- When the table is full, double its size and copy all previous elements into the new table.
- Hence, every time create a new table and insert a number will be cost 1, and every time
create a new table to copy all previous elements will cost curr-1, hence:

T (12) 14 2 WG
TCAN= (14 1+ 140 +1 I

) (\/__w) (2t 418+ )= 3n
- N = Mhuns c. -

i v hoping © N, n i e

TM(};P;VQQ pivs A’ /4_

M-Zaj = 2n

1=

T(wN)= 3N
The owmertied  cost pex opefoitio, = % = O(ﬂ_)



- Run Time

Charge 1 per elementary insertion. Count only elementary insertions, since all
other costs together are constant per call.

¢; = actual cost of 7 th operation

* Ifnotfull,c; = 1.

« If full, have i — 1 items in the table at the start of the ith operation. Have to
copy all i — I existing items, then insert /th item = ¢; = 1.

n operations = ¢; = O(n) = O(n?) time for n operations.

Of course, not every operation triggers an expansion:

i if7 —11sexact powerof 2,
C; = )
! | otherwise .

- Aggregate analysis

n

Total cost = Zr,-

i=l1

llgn]

n+22’

j=0
2nguj+l -1
=n++ ]

< n+2n

IA

= 3n
Therefore, aggregate analysis says amortized cost per operation = 3.

7. Steps
e First try $1
- Charge 1 for each insert
- Nothing to pay for expanding the array
e Second try $2
- Charge 1 for each insert
- Charge 1 for insert-to-new-table (stored credit)
- Nothing to pay for second expand
e Third try $3
- Charge 1 for each insert
- Charge 1 for insert-to-new-table
- Charge 1 for recharge-dollar: used to recharge the old elements that have spent their copy-dollars
; useful when double the table
e Explanation scenario
Charge $3 per insertion of x.
« $1 pays for x’s insertion.
« $1 pays for x to be moved in the future.
« $1 pays for some other item to be moved.
Suppose the table has just expanded, size = num = m just before the

expansion, and size = 2mand num = m just after the expansion.
The next expansion occurs when size = num = 2m.

* Each insertion will put $1 on one of the m items that were in the
table just after expansion and will put 51 on the item inserted.

* Have $2m of credit by next expansion, when there are 2m items to
move. Just enough to pay for the expansion, with no credit left over!

for a sequence of m insertion operations, the amortized cost per
operations is 3, which is in O(1).



8. Credit invariant

e At any step each element has a const

Used to show the credit is always positive
e Example by a Binary Counter

Credit Invariant: At any step, each bit of the counter that is equal to 1 will have $1 credit
Initial condition: counter is zero with no credit
- Proof by induction

Induction step: assume true up to some value of x and now
consider next increment

Casel:x=b..bb01..1 2 b..bb10..0
(i least significant bits are 1, i+15t bit is 0)
i+1 = actual cost: use i credits to pay for i flips 120
use 1 out of 2 to pay for 021,
use 1 out of 2 for credit on the new “1”
Case2:x=11.. 1 > 00..0

(all bits are 1)
actual costis k

use k credits to pay for k flips 120

extra $2 isn’t needed.
Thus invariant is always true

T

Credit invariant: a claim about the value of the cummulative stored credit Z(f, —¢;). Usually

=1
of the form "element with property P contains 2 stored credit (- can be dependent on property
P)II

n
If we show that the credit invariant always maintains positive stored credit i.e. Z(r"-.,- —¢) =0,

7 l
Vn, then each operation ¢ is O(¢;) amortized.

e Example by HashTable

Credit Invariant: Each element in the second half of array has $2 credit
- Scenario:

- $3
- Proof by induction
Proof:
* Base case: no elements in the table, so it is true

Inductive step.

Case 1: array not full
$1to append, $2 stored on new item

Case 2: Array full; make new array

Copy all items using stored credit
Add new item ($1) plus 52 credit



9. General answer steps for both methods
When using the aggregate method; you can follow these steps:

1. State your costs as accurately as possible

TN

3. Divide the bound f(m) by m to get a bound on the amortized sequence complexity

2. Calculate a bound f(m) on those costs

When using the accounting method, you can follow these steps:

1. State your costs as accurately as possible

2. State what you are going to charge for each operation

3. State how and where your credits are going to be stored

5. Prove that your credit invariant is valid initially and across all possible operations
6. Show that you can always pay for each operation, based on the credit invariant

7. Calculate the amortized sequence complexity

Skewed-Heap-Merge
10. Definition and Code

A skewed heap is a heap that attempts to maintain balance by unconditionally swapping all
nodes in the merge path when merging 2 heaps

function SkewedHeapMerge(h, h')
if h =NIL or h'=NIL then
Return the other
if h'.root< h.root then
Swap h < h' > force h to have the smaller root
h.right=SkewedHeapMerge(h.right, h')
Swap h.right <+ h.right
Return h

11. Abstract Example
Case 1: h.right==NIL

merge swap children
h.left h' A A ' h.left

Case 2: h.right # NIL

Recurse on h.right

kewipdHeapMer,

h.right h' h.left h.right h'

swap children

evedHeap)erg 2 versa or
R h.right B left & TORONTO




& W @@ ) e @

Merge result ‘

(1) (1)

@ o Swap children o @

@ @0 & @ ®
e O,

12. Advices
Part (a): prove SkewedHeapMerge(h, h') is O(logn) amortized

@ Need to charge $¢log n per operation
Let w7'(x) =# nodes in subtree rooted at
heavy node: w1'(x) > $wT (parent(x))
light node: w1'(z) < %w'l'(parent(:n)]
Cost of merge is minimized if the rightmost path is all light nodes
Misplaced node: a heavy node on the rightmost path
Find the # light nodes on any path from the root to a leaf
Cost of merging along rightmost path is bounded by the # light nodes (also bound for the credit invariant)
Pay for the swapping of children using the credit invariant and additional funds

Re-establish the credit invariant, how many misplaced nodes remain after swap?

Part (b) Show Insert(h, «) and DeleteMin(h) are O(logn) amortized
Simply define/implement both functions using SkewedHeapMerge with some (O(1) operations



Graph Algorithm

Graph
1. Definition

G = (V, E) defined over set of vertices |V|
and set of edges |E|

2. Properties
e Weighted vs un-weighted
- Weight: a numerical value attached to each individual edge
e Directionality
- Directed: one-way relationship
- Un-directed: bi-directional

e Path: sequence of edges, between adjacent vertices

- Simple path: no vertex is repeated (A -> B -> C)

- Path: have repeated vertex (A ->B ->C ->B > ()
e Cycle: simple path with same start/end vertex

- eg:A>B>C->A
e Connectivity

- Connected graph (G): there exists a path between every 2 vertices.

- Otherwise, G is disconnected
3. Representation
e Adjacency list
e Adjacency matrix
e Example

Adjacency
Matrix

Adjacency
List

|
v v v v
D

v

6 —

/ B 0 1] 0 0 0 0

4. Example of a graph

For an undirected graph: ) J\ L
1 2[ {51/
—2 3 T] F5] 3] ~4]7
' \3 3 Iz 45
|~ 4 2] Hs5]H3[/
5—4 5 fa] 2] IH2]]

If edges have weights, can put the weights in the lists.

Weight: w: £ — R

We’ll use weights later on for spanning trees and shortest paths.
Space: O(V + E).

Time: to list all vertices adjacent to u: ©(degree(u)).

Time: to determine whether (1, v) € E: O(degree(u)).

11



5. Adjacency matrix

1 2 3 45
V> [V]matriz 4 = (@) ; (1] (l> (I' (1‘ Il I (I) ? :; (-1.
1 if(i,j)eE. sjo 101 0 2|00 01
=00 otherwise . 4101 101 o R
sli 101 0 410 0 1 1
Space: O(V?).
Time: to list all vertices adjacent to u: ®(V).
Time: to determine whether (1. v) € E: ©(1).
Can store weights instead of bits for weighted graph.
BES (Breadth-fir. rch
6. BFS model
e Input: Graph G = (V, E), either directed or undirected, and source vertex s belongs to V.
e Output:

- v.d: shortest distance from s to v for all v belongs to vertices V
- v.m v’s predecessor on the shortest path from s
- (u,v): the last edge on the shortest path from s to v
- Predecessor subgraph: contains edges (u,v) such that v.t =u
- It forms a tree called the BF-tree
7. Complexity Analysis
e Runtime: O(V+E) overall
- Queue Operation: O(V)
- Scanning adjacent list: O(E)
- Directed: O(E)
- Un-directed: O(2E)
e Space complexity: O(V)
8. Key Take-aways (run time)
Key Take-Aways
@ Discover all nodes of depth & before discovering any node of depth & + 1
o we only discover nodes reachable from s (i.e. 352 ¢)
@ Runtime: O(V + F)
o Node types: WHITE (undiscovered), GREY (processing), BLACK (finished)
@ maintain v.d/d[v] and v.r/w[v], Vo € V
o Yo ¢ V, d[v] = min{+#tedges in any path from s to v}
o if s 5w, dv] =0
o 7|v] is the predecessor of v on the shortest path s — v

BFS can be thought of as a SSSP algorithm for a graph with all edge weights equal to 1.

d[v] = 6(s,v).
DFS (Depth-first search)
9. Model
e Input: G = (V, E), directed or undirected, no src vertex
e Output:
- DF-forest

- d[v]: discovery time
- {[v]: finishing time



10. Code

0=
@

-

initial state

finished,

reachable

during traversal final state

e Global search starts a local search on each vertex to explore entire graph.

DFS(G)

1
2
3
4
5
6
7

DFS-VISIT(G, u)

for each vertex u € G.V
u.color = WHITE
u. T = NIL

time = ()
if u.color == WHITE

DES-ViIsIT(G,u) 10

1
2
3
4
5
6
7
8
9

time = time + 1 // white vertex u has just been discovered
u.d = time
u.color = GRAY /
for each vertex v in G.Adj[u]” // explore each edge (u,v)

if v.color == WHITE

VT =U

time = time + 1 <—
u.f = time
u.color = BLACK // blacken u; it is finished

- At current position, mark as white since haven’t visit

- Goes to visit function, mark current as grey since currently visited, then look at the neighbours
- If the neighbour is white (haven’t visited), assume current position goes to that neighbour,
calculate neighbours by visit function again, until all graph has been reached.

- Time is to track the structure of the graph, more useful for detect back edge in cycle detection. d

stands for detection ti

11. Complexity Analysis
e Run time: O(V+E)

- For each vertex: DFS
vertex.

me, and f stands for finish time.

visits each vertex exactly once, because the coloring is done once per

- For each edge: for each vertex u, the algorithm explores every edge (u, v) emerging from u.
e Space complexity: O(V)
12. Properties of DFS: Parenthesis theorem

e rules

For all u, v, exactly one of the following holds:

l.

u.d <u.f<v.d<vforv.
and [v.d, v.f] are disjoint) an

. ud<vd<vf <u.fand

finished before u.)

.vd <ud<uf<v.fand

finished before v.)

d<v.f<u.d<u.f(ie. the intervals [u.d, u.f]
d neither of u and v is a descendant of the other.

v is a descendant of u. (v is discovered after and

u 1s a descendant of v. (u 1s discovered after and

Sou.d < v.d < u.f < v.f (v is both discovered and finished after u) cannot
happen.

- When DFS starts exploring from a vertex, it is the opening a parenthesis
- When DFS finishes with a vertex (has looked at all its edges and nowhere to go), it as closing a

parenthesis.

- Finish and discovery time will not overlap with each other unless they are fully nested
e Iftwo vertices, U and V, the interval for U is from its discovery to its finish time, same for V, then:

- The intervals are completely separate (U and V are on different branches of the DFS tree)
- The internal for U completely contains the interval for V (V is a descendant of U in the DFS tree)
- The interval for V completely contains the interval for U (U is a descendant of V in the DFS tree)

13



13. Key Take-Aways (Run time)

@ Discover all "deeper" nodes first.
@ Runtime: O(V + E).
@ Maintains v.d/d[v|, v.f/f[v], v.m/m[v].

o w|u|=parent/predecessor of u in the DFS.

o d|u]=time of discovery of u in the DFS.

o f[u|=time when u is finished processing in the DFS

o Note that d[u] < f[u] by construction in the DFS algorithm.

@ We will discover all nodes in V' (produces a DFS forest).

@ WHITE (undiscovered) vs GREY (processing) vs BLACK (finished) nodes.

@ Tree vs Back vs Forward vs Cross Edges
° . in the DFS format, i.e. we explored edge (u,v).
o Back Edge: (u,v) such that u is a descendent of v (includes self-loops).
o Forward Edge: (u,v) such that u is an ancestor of v, but is not a tree edge.
e Cross Edge: all other edges.

@ Back edge exists DFS forest <> cycle exists in graph.

@ If a graph is undirected, then all edges are either tree or back edges.

When exploring edge (u,v) in DFS:

@ color[v]=WHITE: (u,wv) is

@ color[v]=GREY: (u,v) is Back Edge

@ color[v]=BLACK:

o dlu| < d[v], (u,v) is Forward Edge
o dlu] > d[v], (u,v) is Cross Edge

14. Example

Determine if an undirected graph G = (V, E) contains a cycle in O(V) time.
Solution:

1: Run DFS

2: if encounter a back edge or |V| distinct edges then
3 Retrun True

4: else

5 Return False

Correctness and running time:
Claim: back edge <> cycle = O(V + )

Theorem B.2: |K| > |V| — 1 = cycle, so (G must contain a cycle

If |[E] < |V|, then we will return True iff we find a back edge in O(V + E) = OQ(2V) = O(V) time.

If || > |V|, either we find back edge first or we discover |V| distinct edges first, either way we did O(V) item
times.

Classification of edges
15. Different edges

o Tree edge: found by exploring (u, v) in DFS

e Back edge: (u, v), uis a descendant of v

e Forward edge: (u, v), where b is a descendant of u, but not a tree edge

e Cross edge: any other edge, can go between vertices in same DF tree or in different DF trees

16. Application

e Cycle detection: perform DFS with edge classification on the entire graph and ask whether there exists a
back edge anywhere in the graph.

e Connected components problem: edge represents jobs need to be done in the same day. Find out the max
num of days that are needed to carry out all jobs, only need to count the components.

Topological sort

17. Directed acyclic graph (dag)
e Definition: A directed graph with no cycles.
e (Good for modeling processes and structures that have a partial order: a>b and b > ¢ thena>c¢

14



e Usually used to indicate precedences among events
18. Topological sort

e Topological sort of a dag: a linear ordering of vertices such that if (u,v) belongs to E, then u appears

somewhere before v (not like sorting numbers).

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finish times v.f for each vertex v
2 as insert it onto the front of a linked list
3 return the linked [ist of vertices

19. Key Take-Aways (Run time, code)

@ Produces total ordering from partial ordering.

e (¢ = (V,F) must be a DAG to produce a valid topological sort. (This is also the only
algorithm you learn and can use for DAG in this course.)

e Runtume: O(V + E).

Can convert undirected graph to a directed graph, V(u,v) € E do the following transformation.
Number of edges doubles, which shouldn’'t change asymptotic behavior.

O—0© — @O

1: function TopologicalSort(G)

2; DFS(G) -
3: Output vertices in decreasing order of finish time & TORONT
20. Example

A directed graph G = (V, I) is said to be semiconnected if Vu,v € V either u — v or v — u.

Give an O(V + E) algorithm to determine whether a given directed graph is semiconnected.
Algorithm: Find G°CC the strongly connected components of (7 using CLRS 20.5. Then run Toposort on :9CC,

(G99Y is a DAG), (i is semiconnected if there exists edge between all adjacent vertices in the topological order of G9¢¢,

Runtime: O(V + FE)

Correctness:
Claim:
Let vy, v2,...,vn € VICC be the topological ordering
(vi,vip1) € BSCC Vi & G99 semiconnected.
Proof:
o path Vi —F Vi1 Wi
so take 1 < j, Vu; — v via path v; = vip1 — - 2 Vi1 2 v
<« either exists path v; — v; 1 or vy —+ v;
Vi1 — v; cannot exist because that breaks topological ordering.
consider v; — vy, — vi41, which cannot exist because then k > i and k < ¢+ 1, but k integer.

So v; — Vi1 is the edge (v, ’r,-','_+[)
E

15



Minimum Spanning Tree
General

1. Definition of ST

Spanning Tree: 1" C IV such that Vv € V, J(u,v) € T or J(v,u) € T (contains all

vertices)
2. Definition of MST

® A spanning tree whose weight is minimum over all spanning trees.
Minimum Spanning Tree: Spanning tree 7' C E such that w(1') = Z w(u, v) is

(u,v)eT
e Mminimized.
3. Model
e Input
- Undirected graph G =(V, E)
- Weight w(u, v) on each edge (u, v) belongs to E
e Goal

- Find an acyclic subset T included by E such that the total weight is minimized:

w(T) = Z w(u,v)

(u,v)eT
4. Properties of an MST
e Ithas|V|-1 edges
e [t has no cycles
e [t might not be unique

o An MST always has |V| vertices and |V| — 1 edges (| Emst| = |VusT| — 1)
o Consider (u,v) € 17" and (x,y) ¢ 1, then T°U {(x, y)} always contains a cycle and T’
M (w,v)} U{(z,y)} is a spanning tree.

5. Example

Let G = (V, F) with distinct edge weights, show that the edge connecting two separate

components with the least weight must be included in every MST.
Proof: Let ¢ be the minimum-weight edge

Assume 37" an MST such that e ¢ 1

T U {e} must form a cycle, take any edge f # e in that cycle

T =T uU{e} \{f}is a spanning tree

since w(e) < w(wv),Vv # ¢, then w(1") w(1") + w(e) —w(f) < w(1"), Contradiction.

Generic Algorithm (greedy approach
6. Code
GENERIC-MST (G, w)
1 A=9
2 while A does not form a spanning tree
3 find an edge (u, v) that is safe for A
4 A=AU{u,v)
5 return A
7. Terms and Theorem
e Acut(S,V-9)
- Itis a partition of vertices into disjoint sets S and V - S
- Edge (u, v) belongs to E crosses cut(S, V - S) if one endpoint is in S and the otherisin V - S
- A cutrespects A iff no edge in A crosses the cut
- Light edge crossing a cut: iff the edge’s weight is min over all edges crossing the cut. For a given
cut, there can be >1 light edge crossing it
e Theorem: Let A be a subset of some MST, (S, V-S) be a cut that respects A, and (u, v) be a light edge
crossing (S, V - S), then (u, v) is safe for A.
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Prim’s Algorithm (gr approach

8. Kruskal and Prim theorem
e Kruskal: The set A is a forest whose vertices are all those of the given graph. The safe edge added to A is

always a least-weight edge in the graph that connects two distinct components.
e Prim: set A forms a single tree. The safe edge added to A is always a least-weight edge connecting the
tree to a vertex not in the tree.
9. Prim’s Algorithm
e Builds one tree, so A is always a tree.
e Starts from an arbitrary “root” r
e At each step, find a light edge connecting A to an isolated vertex. Such an edge must be safe or A. Add
this edge to A.
e Run time: O(ElogV)
10. Finding a light edge
e Use a priority queue Q:
- Each object is a vertex not in A
v.key is the minimum weight of any edge connecting v to a vertex in A. v.key = inf if no such

W) = w (T)

edge.
- v.risv’sparentin A
A={(v.v.m):veV —-{r}— 0}

A={(v.v.m):velV —{r}}

- Maintain A implicity as:
- At completion, Q is empty and the minimum spanning tree is:
e Key operations
- Insert (u, key): Insert u with key value in Q
- Run time: O(log|Q))
- Extract MIN(): Extract the item with min_key
- Run time: O(log|Q|)
- Decrease-key(u, new-key): Decrease n’s key with new key
- Run time: O(log|Q))

- Alternatively: Delete + insert
Note: cannot just update the key of u without affecting the heap, need to readjust the

weight.
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11. Code

MST-PRIM(G, w, r)
foreachu € G.V

u.key = oo ]OCU)

1
2
3
4
50
6
7
8
9
11

£ e f i

while Q # @
u = EXTRACT-MIN(Q)

u.m = NIL

r.key =0
=G.V

for each v € G.Adj[u]

ifve Qandw(u,v) <v.key

U VT =U

v.key = w(u,v)

Deckese ~E<d (V fatco))

Total runtime:

0c !o&@)

W&
O ng@)

o) . T(Gﬁ-ro-u&*l\/lw) ¥ = ”“’7“‘2(“) 'T'Deueﬁse—(m?

r LV

O &)
Implementationof Q [T Extroct — man|T clecresgs — e2y | TOTAL
Binad — Heop VO Clogv) +EEO0Clog V) O (_E—IOg,V)
Areq, OCyD V&
Fiboneces; — e, Oclogy) Dca)
' 4 —
12. Priority queue operations, time and application
OPATADNS  ( Tumplemestotion)
vwd)‘us‘r higlet amsert ( Ttew, prierity)
a wew Shewadt 40 o ng_’D O Clogu)
d’H"W%\n‘? €) Ow)
l‘eaafjuts+ Lleiykl' Mﬂvﬁeﬂ'ﬂa‘oh‘v (8 0 ((ogn)

Scation
@ PO schelueli

@ 'D:j:ma’a Shortest  parth,
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Single Source Shortest Paths
General

How to find the shortest route between two points on a map.
Input:

* Directed graph G = (V. E)

* Weight function w : E — R
Shortest-path weight u to v:

5( ) min{w(p) : u A v} if there exists a path u ~ v,

u,v) = )
o0 otherwise .

Shortest path u to v is any path p such that w(p) = d(u. v).

1. Shortest Path Properties: Optimal substructure
e Any subpath of the shortest path is the shortest path.
e Negative-weight edges:

- If we have a neg-weight cycle, we can keep going around it, and get w(s, vO = -inf for all v on the

cycle.
- The negative-weight cycle is not reachable from the source is also good.
- Some algorithms work only if there are no negative-weight edges in the graph.
2. Procedure for finding SSSP
e For all single source shortest-paths algorithms:
- Start by calling Initialize-single-source
- Relax edges
e The algorithms differ in the order and how many times they relax each edge.
e Code

INITIALIZE-SINGLE-SOURCE(G, s)

| foreachvertex v e G.V .
2 v.d = 00 S hovtest —pathr ectmcke
3 V.T = NIL

4 S,d = O

For each vertex v € V:

* vd =§(s.v).
* Initially, v.d = oc.
* Reduces as algorithms progress. But always maintain v.d > §(s, v).
* Call v.d a shortest-path estimate.

* v.m = predecessor of v on a shortest path from s.

* If no predecessor, v.71 = NIL.
* x induces a tree—shortest-path tree.

3. Relaxing an edge (u, v)
e Run time: O(1)

1: function Relax(u,v,w) P,
2: d[v] = min(d[v], d[u] + w(u,v))
(u,v)
1: function Relax(u,v,w) Py
2 if d[v] = d|u] + w(u,v) then
3: dlv] = dJu] + w(u,v)
4 o] = u if w(p1) > wip2) + w(u,v), then we want to

take ps + (u,v) because it is shorter.

4. Shortest-paths properties
e Based on calling initialize-single-source once and then calling relax zero or more times.
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Triangle inequality: For all (v, v) € E, we have §(s,v) < d(s.u) + w(u.v).

Upper-bound property: Always have v.d > §(s,v) for all v. Once v.d gets
down to §(s, v), it never changes.

No-path property: If §(s. v) = oo, then v.d = oo always.

Convergence property: If s ~ u — v is a shortest path, u.d = §(s.u), and
edge (u.v) is relaxed, then v.d = (s, v) afterward.

Path-relaxation property: Let p = (vo. vy. ..., vg) be a shortest path from
s = vg to vg. If the edges of p are relaxed, in the order, (vo.v,). (V1. V1),
... (vg_;. vr). even intermixed with other relaxations, then vy.d = &(s, vx).

o Triangle Inequality: V(u,v) € £, §(s,v) < 6(s,u) + w(u,v)

o Upper-bound property: d[v] = d(s,v) Vo € V and once d[v] = d(s,v) it never changes

o No-path property: if 7is 2> v then d[v] = d(s,v) =
o Convergence property: if s — u — v is the shortest path in G, Ju,v € V. if d[u] = §(s,u)
prior to relaxing edge (u,v) then d[v] = d(s,v) at all times afterwards.

o Path-relaxation property: if p = (vg,vy,...,vy) is shortest path from s = 1y LN vy, and
paths are relaxed in order (vg,v)), (v1,v2), ..., (vk—1,vk) then dlvg] = d(s,vk)

o Predecessor-subgraph property: Once d[v] = d(s,v)Vv € V, the predecessor subgraph is a
shortest-paths tree rooted at s.

Dijkstra’s algorithm
5. Characteristics

e No negative-weight edges
e Use priority queue
e Keys are shortest-path weights (v.d)
6. Run time analysis
o Qlist: O(V?+ E)=0(V?)
o () priority queue (heap): O((V + E)logV) = O(Elog V') (if sufficiently sparse,
E=0(V?/logV))
o () Fibonacci heap: O(VlogV + E)
e Time: O((E+V)logV) with binary heap, O(VlogV+E) with Fibonacci heap
- O(V) visit each node once
- O(E) scan adjacent lists
- Gisdirected: O(E)
- G isundirected: O(2E)
e Space: O(V)
7. Code
DUKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 §=

3 0=20

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q # 0

7 u = EXTRACT-MIN(Q)

8 S =S U{u}

9 for each vertex v in G.Adj[u]

10 RELAX(u, v, w)

11 if the call of RELAX decreased v.d
12 DECREASE-KEY (Q. v, v.d)

Conti next page...
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function Dijkstra(G,w,s)
Init-Single-Source(G,s)

S5=0 t- set of vertices whose first shortest path weights have been determined
Q=10
for each v € V do

INSERT(Q, v) &> priority queue sorted by d[v]
while @@ # () do

u =EXTRACT-MIN(Q)
S=5uU{u}
for each v < adj[u] do
Relax(u, v, w) &> priority queue sorted by d[v]

Decrease-key(Q, v)

e S: vertices whose final shortest-path-weight is determined
e Q: Priority queue =V - S
e Key:vd
Bellman-ford’s algorithm
8. characteristics
e Allows negative-weight edges
e Returns true if no negative-weight cycles are reachable from s, false otherwise.

9. Code and run time

BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s) & V)
2 fori =1to|G.V|]—-1 ———————— [i=2

3 for each edge (u,v) € G.E 3 relox each <dge D“&j BCE)
4 RELAX(u, v, w)

5 for each edge (u,v) € G.E

6 ifv.d>ud+w,v) Ok VW-CT DOCE)

7 return FALSE <— Ao Salwkon

8 return TRUE

runtimg: () ( UE>

function Bellman-Ford(G,w,s)
Init-Single-Source(G,s)
foreachi—1,..,|V|—1do
for each (u,v) € I do
Relax(u,v,w) &> Relaxing all edges |V'| — 1 times

for each (u,v) € IV do
if d[v] > d[u] + w(u,v) then

Return False & Negative cycle
Return True t valid shortest path
e Steps

- Set every entry in D as inf, set D[s] = 0

- Relax each edge V-1 times

- Update every node each time by the shortest cost

- Previous shortest path might be updated by go to a new vertex and get back

21



10. Path-relaxition property

Lemma 24.2

Let G = (V, E) be a weighted, directed graph with source s and weight func-
tion w : E — R, and assume that G contains no negative-weight cycles that are
reachable from s. Then, after the |V| — 1 iterations of the for loop of lines 24
of BELLMAN-FORD, we have v.d = (s, v) for all vertices v that are reachable

fi X
oms: '

Proof We prove the lemma by appealing to the path-relaxation property. Con-
sider any vertex v that is reachable from s, and let p = (vy, vy, ..., Vi), where
vp = s and vy = v, be any shortest path from s to v. Because shortest paths are
simple, p has at most |V'| — 1 edges, and so k < |V|— 1. Each of the |V | — 1 itera-
tions of the for loop of lines 2—4 relaxes all | E| edges. Among the edges relaxed in
the ith iteration, fori = 1,2,...,k,is (v;_, v;). By the path-relaxation property,

therefore, v.d = vi.d = 8(s, vi) = 8(s,v). ]
» Path-relaxation property: Let p = (vg. vy, ..., vx) be a shortest path from
5§ = vg to vg. If the edges of p are relaxed, in the order, (vq.v;). (V1. v2).

... (vg—1. vz ), even intermixed with other relaxations, then vi.d = 8(s. v;).

SSSP in DAGs (single-source shortest paths in a directed acyclic graph)

11. DAG
e Characteristic: no negative-weight cycles
e code

DAG-SHORTEST-PATHS (G, w, 5)

1 topologically sort the vertices of G 4 oc¢ U+E>
»2  INITIALIZE-SINGLE-SOURCE (G, s) ¥ © (V)
3 for each vertex u € G.V,taken in topologically sorted order i , U|

~

4 for each vertex v in G.Adj[u]
5 RELAX(u, v, w)
ST T——

- Overall O(V+E) complexity
Difference Constraints and Shortest Paths
12. Linear programming

e Linear approximation tool
e Need to satisfy a set of constraints set
13. Rules
e Feasibility problem
- Wish to find any feasible solution, or determine that no feasible solution exists.
e Systems of difference constraints
- Each row of the linear programming matrix A contains one 1 and one -1, all others are 0.

- constraints given by Ax b are a set of m difference constraints involving n
unknowns, in which each constraint is a simple linear inequality of the

form x;, —x; <b, wherel <i,j <n,i # j,and1 <k <m.
e Example

Finding a 5-vector x = (x;) that satisfies —x, < 0,
1 -1 0 0 O 0 X1—xs < -1,
1 0 0 0 -1 . -1 x2—xs < 1,
01 0 0 -1 o 1 X—x; < 5.
-1 0 1 0 0 i 5 -
-1 0 0 1 0 o Yamxo= %
0 0 -1 1 0 e -1 Xa—x3 = -1,
0 0 -1 0 1 s -3 xs—x3 < -3,
0 0 0 -1 1 -3 (xs—x < 3.
x=(-5-3,0,-1,—4) x'=(0,2,54,1)
Lemma 24.8
Let x =: (X5 %0555 a3 X,) be a solution to a system Ax < b of difference con-

straints, and let d be any constant. Then x +d = (x; +d,x, +d,...,x, + d)
is a solution to Ax < b as well.



Proof For each x; and x;, we have (x; + d) — (x; + d) = x; — x;. Thus, if x
satisfies Ax < b,sodoes x + d. ]

14. Constraint graph

G = (V, E), weighted, directed.

¢« V ={vg.vq.00... ., v, }: one vertex per variable + v,
* E ={(vi.v;):x; —x; < by isaconstraint} U {(vg.vy). (Vg.v2). ..., (vo.vp)}
* wl(vg.v;) =0forall j =1.2,....n
* w(vi ) = b ifx; —x; < by

Xy —X2 = 0,

xp—xs =< -1,

X2 — X5 = 1,

X3—x; < 5,

X4g—X1 = 4,

Xs—x3 < -1,

Xs—Xx3 =< =3,

X5 — X4 < 3.

e Theorem: given a system of difference constraints, let G = (V, E) be the corresponding constraint graph.
- If G has no negative weight cycles, then:

X = (0(vp, v1).0(vg, V2), ..., 0(vg. v,))

- If G has a negative weight cycle, then there is no feasible solution.
15. Negative cycle
e The sum of a cycle is negative
16. Steps to find a feasible solution

1. Form constraint graph.
* n + | vertices.
* m + n edges.
* O(m + n) time.

2

. Run BELLMAN-FORD from vy.
s O((n+ D)(m +n)) = O(n? + nm) time.

3. BELLMAN-FORD returns FALSE = no feasible solution.

17. Find feasible solution by using BF method
e Draw a constraint graph by using the constraints
e Draw an invisible graph about adding vertex V0, the weight from VO to all other vertices are all zero
e Find the shortest path for each vertex from VO0:
- First, determine negative cycle
- If the summation of the weights of a cycle is negative, then it is a negative cycle
- If there exist any negative cycle, then there is no solution, write NEGATIVE CYCLE
(according to the requirement)
- Find the smallest number (negative number as smaller than positive number).
- According to that edge’s direction, set the starting point as zero, and the ending point as
zero+weight of that edge.
- Each time, move on to next connected vertex, and the score stored within each vertex is by
supperposition of previous vertex’s score and the weight of that edge.
- Calculate every possible path. If one path is smaller cost than the other, update the vertex score.
- Write the final score of each vertex as (vl_)
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e Rewrite the solution as X = value, value is the final score calculated from previous step.

- If negative cycle, write NO SOLUTION.
18. Procedure for difference constraints

To solve a difference constraint problem with n variables, =,...,7,,

© Build constraint graph (weighted, directed) ' = (V, E)

o V ={wvp,v1,...,vn}: one vertex per variable. Define v, as the pseudo-start.

e FE={(vi,vj):x; —zi < by isa constraint.} U {(vo, v1), (vo,v2), ..., (vo,vn)}: one edge per constraint.

Direction is from the subtrahend to the minuend*. Also connect pseudo-start to all vertices in the constraints.

© Assign weights

@ w(wo, wi) =), for all 4

® w(v;,v;) = by, for all constraints x; — x; < by
© Theorem:

@ If G has no negative weight cycle, then =1 = d(vo,v1), ..., Tn = d(vo,vn) is a feasible solution
@ If GG has a negative weight cycle, then there is no feasible solution
© Build graph and run Bellman-Ford to find the shortest path from v to all of vy,..., v, which gives the solution, or
detect negative cycle (no solution).

19. Example

Find a feasible solution or determine that no
solution exists for the following system of
difference constraints:

€rp — 3 S 3
o — 11 < —1
ry— 19 < —1
xy—xy <1
xry—ax <4
| wo | v1 | w2 | v3 | v
Running Bellman-Ford gives: iter0 0 0 0 0|0
§(vo,v1) =0, 8(vo,v2) = —1, 8(vo,v3) = —2, 8(vo,v4) = 0 iterl 0|0 |-1|-1]0
iter2,3,4 0 0 -1 2 0

A feasible solution is:

E-!B
|



Maximum Flow

Maximum-flow problem define
1. Flow networks

G = (V. E) directed.

Each edge (u. v) has a ecapacity c(u.v) = 0.
If (u,v) & E,then c(u,v) = 0.

if an edge (v, v;) € E, then (vy,v,) € E

Source vertex s, sink vertex ., assume s ~ v ~» t for all v € V', so that each
vertex lies on a path from source to sink. |E|>= [V - ]

A flow in G is a real-valued functic f VxV =R

that satisties the following two properties:
Capacity constraint: Forall u,v € V, we require 0 < f(u,v) < e(u,v).
Flow conservation: Forall u € V — {s,1}, we require

Zf(u.u):Zf(u.v).

veV veV
When (u,v) € E, there can be no flow from u to v, and f(u,v) = 0.

- The flow from vertex u to vertex v -- nonnegative quantity f (u, v)

- The value [f] =) f(s.v) =Y f(v.5)

vev vevV

= flow out of source — flow into source .

e Input: a flow network with source and sink
e Goal: find a flow of maximum value
2. Antiparallel edges
e Ifanedge (vl, v2) belongs to E, then (v2, v1) not belongs to E.
e Solution: adding a new vertex and replacing the original edge with two new edges connect with the new
vertex.
3. Networks with multiple src and sinks
e Reduce the problem by superposition through adding a super source and a super sink
Flow mathematics
#H Moximun, Flow woathematics
£ = == foon
mmﬁg:
@ fex,% =0
e € (X /T) = —fcH %)
G £ exul, w) = £ cX,wt £T,w)
B oxal=p2
@ F(w, XD = w0« fTw) i x0T = »

Ford Fulkerson method
4. Residual capacity
Given a flow f in network G = (V. E).

Consider a pair of vertices u,v € V.

How much|additional|flow can be pushed directly from u to v?
That’s the residual capacity,
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c.v)— fluv) if@wv)ek.

cr(u,v) = f(v,u) if (v.u) € E.
0 otherwise (i.e., (u.v).(v,u) ¢ E).

5. Residual network
e Similar to a flow network but it may contain antiparallel edges ((u,v) and (v,u)).

The residual network is Gy = (V, Ey), where
Residual edge Ey = {(u.v) €V xV icp(u.v) > 05 .

6. Augmenting Path (AP)

e Admits more flow along each edge

e Like a sequence of pipes through which can squirt more flow from s to t
7. Residual capacity

e How much more flow can be pushed from s to to along augmenting path p

cr(p) = I‘IILIL:(".;@L"I)? (u,v)ison p}

8. Cuts of flow networks
e A cut(S,T) of flow network G = (V, E) is a partition of V into S and T =V - S such that s belongs to S
and t belongs to T.
If fis a flow, then the net flow f(S, T) across the cut (S, T) is defined to be:
Minimum cut: a cut whose capacity is minimum over all cuts of G.
- After compute the final flow by applying the FF method, sum all capacity that outward from t as
the minimum grade, then from the original graph find the cut that satisfy this capacity grade.

f(8,T) = ZZ f(u, u)—ZZ fv,u). . ° 1212 O

\
ues veTl ues veT W A
The capacity of the cut (S, T) is
—ZZc(u.v) Y13

(5.7) =
c ues veT —@Qg TB L+12 4‘:!

9. Theorem (Max-flow min-cut theorem)
e The following are equivalent:
- Fis a maximum flow
- Gf has no augmenting path
- |fl=c¢c(S, T) for some cut (S, T)
e Corollary:
- The value of any flow <= capacity of any cut
- So maximum flow <= capacity of minimum cut
e When we talk about the cut, we usually calculate the capacity of the cut, which is only count from u to v.
10. Code
e Keep augmenting flow along an augmenting path until there is no augmenting path. Represent the flow
attribute using (u, v).f

FORD-FULKERSON(G, s,1)

1 for each edge (u,v) € G.E

2 (v,v).f =0

3 while there exists a path p from s to ¢ in the residual network Gy
4 cr(p) = min {cr(u,v) : (u,v)isin p}

5 for each edge (u,v) in p

6 if (u.v) e G.E

7 (w,v).f = (w,v).f+cr(p)

8 else (v, u).f = (v,u).f —cr(p)

9 return f
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e [t is a problem of optimizing the distribution of some quantity (data and goods) through a network with
capacity constraints.

e This algorithm will return true if possible route is found, false otherwise.

11. Max-flow capacity working steps

e Initialize all scores as zero.

e Along the arrow direction, find one possible path from src to des, and mark the score as the weight of
each edge. Mark capacity as the minimum score.

e Traverse backward from des to src, and subtract the minimum score with each weight of the edges as the
edge’s new score.

e Find another possible path, if zero score then use the edge’s weight, if already score a value then use the
scored value subtract from the weight to get current score. Mark capacity as the minimum score.

e Repeat step three, and if it has original score, add the original score with the newly computed score as the
current score.
e The total capacity is the sum of all capacity calculated.

R e e R e -
[f5]=Cslp) =4

[fl < |fl+|fpl =0+4=4

p:8 vy v vzt
;] =Cslp) =4

[fl—fl+|fsl =4+4=8

12. Procedure for solving: using FF method to find max flow
e Graph
- Residual Graph (with augmenting path bolded)
- Flow

Rebickiced gropn (with o.vgwmng poth T reol Flow

e Minimum cut on original graph
Edmonds Karp Algorithm
13. How to run it
e Do ford-fulkerson, but compute augmenting paths by BFS of Gf.
e Augmenting paths are the shortest paths from src to des (s to t) in Gf, with all edge weights = 1.
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14. Run time
o OWE)
e Proof:
To prove, need to look at distances to vertices in G.

Let 67 (u. v) = shortest path distance v to v in G, with unit edge weights.

Lemma

Forallv € V' —{s.1}, 67 (s, v) increases monotonically with each flow augmenta-
tion.

Theorem

Edmonds-Karp performs O(VE) augmentations.

Proof Suppose p is an augmenting path and ¢y (1, v) = c¢s(p). Then call (1, v) a

critical edge in G, and it disappears from the residual network after augmenting
along p.

> 1 edge on any augmenting path is critical.

Will show that each of the | E| edges can become critical < |V| /2 times.

Use BFS to find each augmenting path in O(E) time = O(VE?) time.

Can get better bounds.

Maximum Bipartite Matching
15. Bipartite
e IfG=(V, E) (undirected) has a partition of the vertices V=LFfR such that all edges in E go between L
and R.
16. Matching
e Definition: A subset of edges M included by E such that for all v belongs to V, <=1 edge of M is incident
on v. (Vertex v is matched if an edge of M is incident on it, otherwise unmatched)
e Maximum matching: a matching of maximum cardinality.
- M is a maximum matching if [M| >= |M’| for all matchings M’

L R L R
2 Macchsy.

f 2 matching maximum matching

Tutorials
17. Useful results

The maximum flow |f*| of any flow network is upper bounded by the sum of capacities of any cut.
Proof: The flow going across that cut cannot be any larger, so it bottlenecks the flow of the graph.

In the max flow network, the min-cut has capacity |/*|.
Proof: By Max-Flow Min-Cut Theorem.

Let G = (V, E) be a flow network with all edge capacities of 1. (¢(u,v) = 1, Yu,v € V), then |f*| =
the number of edge-disjoint paths in (&

The min cut has capacity |f*|, since all edge weighs 1, each path through the cut accounts for 1
capacity.

Therefore, there are net |f*| independent paths across the cut.

To find the number of independent paths in &
We just find the max flow in GG
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18. More transformations
@ Combine many node into one node — make edge capacities co.
@ Isolate nodes — make edge capacities 0.
o Count number of paths — make edge capacities 1.

@ Restrict flow — make edge capacity C.

19. Vertex capacities

Suppose each vertex has capacity ¢(v). Find the maximum flow from s to .
Transformation:
®© = W ()

Formally: G' = (V', /) s.t.
o V' ={up:veViU{vm:veV}
o E' = {(Vin,vout) : v € V} U {(tout, vin) : (u,v) € £}
o (o, Uin) = c(u,v), V(u,v) € E
e (v, Uout) = ¢(v), Vo € V
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NPC (non-deterministic poly complete)
Introduction
1. Alphabet
° 21 = {a,..., z}: alphabet of every string that make from the letters

22 = {0,.., 9}: alphabet of every string that make from the numbers

e [f a mix of letters and numbers, then not a string from any alphabet
e Empty strings: denoted by €, a string over any alphabet
2. Basic notations

7% The set of all the strings over an alphabet X
E—{—: 2* o {E}

* Binary Alphabet: An alphabet of cardinality 2
* Binary strings: strings over a binary alphabet

{0,1} is a binary alphabet, and {1} is a unary alphabet.

11 is a binary string over the alphabet {0,1}
a unary string over the alphabet {1}

3. Languages

if ¥ is an alphabet
and L is a (possibly infinite) subset of ¥*
then L is said to be a language over X

Each element of L is said to be a string of the language.

37 The set of all the strings over an alphabet ¥
* Example:
{0,11,001}, {e, 10}, and {0.1}" are subsets of {0,1}*

=>» They are Language over alphjabet {0, 1}
{aba,czr,d, f} is a language over {a,b,...,z}
4. Operations of Languages

* Union

* |nter ion [ .
tersectio W 1s a string over Y,

* Difference '
* Kleenestar L* ={we S*:w=w; -+« wy for some k >0 and some w , ..., wy, € L}.

“concatenating zero or more strings from L”

For example, if L = {01, 1,100}, then 110001110011 € L*, since 110001110011 =
101000010101000 101, and each of these strings is in L.

e For a property P of strings to be admissible as a specification of a language, there must be an algorithm
for deciding whether a given string belongs to the language.

L = {w € ¥* : w has property I’}

e Language recognition device: An algorithm that is specifically designed for some language L, to answer

questions of the form “Is string w a member of L?”

5. Finite Automaton/Finite State Machine

* Automaton (plural: automata) is a machine designed to respond to
encoded instructions; a robot

* a language recognition device, as a specifically designed algorithm for
some language L

* Given language L,isx EL?

* We say that a finite automaton accepts language L, if it accepts (i.e.
answers yes for) all strings in L and rejects (i.e. answers no for) all
strings outside L.

* In the context of a compiler, a finite automaton corresponds to a
lexical analyzer, which recognizes and groups the tokens of a language
(such as ‘begin” and ‘+').
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6. Some knowns
Some knowns and open questions: P> C NP Mco-NP; If X € NPC and X € co-NP, then
NP = co-NP; If P=NP, then NP=co-NP.
Motivation
7. Polynomial-time algorithms
e on inputs of size n, their worst-case running time is O(nk) for some constant k.
8. NP-completeness

e Applied to decision problems
e We can cast a given optimization problem as a related decision problem by imposing a bound on the

value to be optimized.
* the hardest problems in NP.
* Definition: A language L C {0, 1}" is NP-complete if
1. L € NP, and
2. L' <p L forevery L’ € NP. “}\;P— frowdd "

9. NP-hard
e [falanguage L satisfies property 2 in the previous point, but not necessarily property 1.
10. Class P
e Problems that are solvable in polynomial time.
e Complexity class P: the set of concrete decision problems that are polynomial-time solvable
P = {L € {0,1}" : there exists an algorithm A that decides L
in polynomial time} .
11. Class NP
e Problems that are verifiable in polynomial time.
e If given a certificate of a solution, then the certificate can be verified to be correct in time polynomial in
the size of the input to the problem.
e Complexity class NP: A language L belongs to NP iff there exist a two-input polynomial-time algorithm
A and a constant ¢ such that:
L = {x €{0,1}" : there exists a certificate y with |y| = O(|x|°)
such that A(x,y) = 1}.

- We say that algorithm A verifies language L in polynomial time.
HAM-CYCLE € NP )
if L € P, then L € NP =y P C NP

12. Class Co-NP

e Complexity class co-NP: the set of languages L such that L JE NP
13. Class NPC
e Ifitis in NP and is as hard as any problem in NP
14. Polynomial-time verification
e Algorithms that verify membership in languages.
e For a given instance i=<G,u,v,k> of the decision problem path, also given a path p from u to v. We can
easily check whether p is a path in G and whether the length of p is at most k.
e View p as a certificate that the instance indeed belongs to the path.
15. Hamiltonian cycles (ham-cycle)
e Use for a no polynomial-time decision algorithm, given a certificate, verification is easy.
e A Hamiltonian cycle of an undirected graph is a simple cycle that contains each vertex.
e Hamiltonian-cycle problem: Does a graph G have a Hamiltonian cycle.

HAM-CYCLE = {(G) : G is a hamiltonian graph}
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16. Verification algo

rithms

e A two-argument algorithm A, where onr argument is an ordinary input string x and the other is a binary

string y called a certificate.

e A two-argument algorithm A verifies an input string x if there exists a certificate y such that A(x, y) =1
e The language verified by a verification algorithm A is:
L ={x €{0,1}" : there exists y € {0, 1}" such that A(x, y) = 1}

HAM-CYCLE = {(G) : G is a hamiltonian graph}

17. Determine different class

(2)

P =NP n co-NP

(©

18. Reducibility

a language L, is polynomial-time reducible to a language L,, written L, <p L,
if there exists a polynomial-time computable function f : {0, 1}* — {0, 1}" such

that for all x € {0, 1}*,

(b)

NP N co-NP

(d)

instance o _
of A

x € Ly ifand only if f(x) € L, . (34.1)
|  polynomial-time instance B _|  polynomial-time | YES__ > > yes
“| reduction algorithm of B~ | algorithm to decide B [ o—> > no

polynomial-time algorithm to decide A

e Polynomial-time reductions: showing that one problem is at least as hard as another, ro within a

polynomial-time factor.

AL

Max

If Ly,L, € {0,1}" are languages such that L, <p L,, then L, € P implies

L, eP.

<N
Difterewt Congtros ot Sp Shetest Potln

B Pwr“{v‘tQ

o 2 ot Rast og hard g rwoVhas | Q

S tb MOKX”‘ ‘F‘[O\U

W\G‘&de

Lemma 34.3

BT Recuct Af;@

G)

yes, f(x) € L,

Y
=

fx)

Ay

N
no, f(x) & L,

L el

yes, x € L,
A

T
no, x & L,
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Clique
19. Clique
* Definition: in an undirected graph G = (V, E), a clique is a subset of

the vertices v’ c v , such that each pair of vertices in V' is connected
by anedge € E

* Clique problem: optimization problem for finding max size clique
* Application: social network, chemistry networks, computational biology
* Decision problem: Does G has a clique of size K?

CLIQUE = {(G, k) : G is a graph containing a clique of size k}
* Naive Algorithm:

. 41@ (\lv(\ D k Ce-)

=

20. Theorem: the Clique problem is NP-complete
e Clique belongs to NP

Proof To show that CLIQUE € NP, for a given graph G = (V, E), we use the
set V' C V of vertices in the clique as a certificate for G. We can check whether //

is a clique in polynomial time by checking whether, for each pair u,v € V', the
edge (u, v) belongs to E.

V oninputs (G = (V,E),k),c = {vy,... ,Up} :
Ifk<Qork>|V|orm#korc €V, reject
Fori=1tom,j=i+1tom:

If (v;,v)) € E, reject
Accept

e Clique belongs to NP-hard
B-CNF-SAT <, CLIQUE

3-CNF-SAT (@v-mv 9 AClvEvidA-mv-]v-B

« $ €3SAT = f(¢) € CLIQUE
« ¢ €3SAT = f(¢) & CLIQUE
21. 3-CNF-SAT

e A satisfying assignment simultaneously satisfies each clause, so that each clause has at least one literal
that is true.

e For a formula with m clauses to be satisfiable, there must be some set of m literals, one from each clause,
that can simultaneously be true.

- Ifno such set exists, the formula is unsatisfiable.
22. Reduction algorithm: 3-CNF-SAT <= pClique

' \ -
0 ==90

—ss
O R /A

N

CLIQUE

e Given a circuit equation P

e List all three clauses in three directions, each consisting of all elements in that clause.
e An edge is placed between two vertices vi' and vj' if:

- they are from different clauses

- Their corresponding literals are consistent (one is not the ‘head’ one of the other)
- e.g ifoneisx P then 71 xlcannot connect with it

e If'this graph has a clique of size k, k is num o clauses, then the circuit is satisfiable.
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4 1 T /1
¢ =\x1 Y —=x2V—x3) A(—x; MX2 VY X3) A (X VX2 Mx3)

B is at least as hard as A
B is harder than A
Ais poly time reducible to B

3 poly time computable function fst. a € A = f(a) € B

we can decide B = we can decide A

A <, B = running time of A < running time of B + O(n*)

23. Prove NP-hard by reduction

Informally: a problem is in NPC if it is at least as hard as any problem in NP.

Formally: a decision problem L s.t.
@ LeNP
@ L' <p L, VL € NP (L is NP-hard)

Using reductions:

Suppose A <, I3, then A < B + O(n*¥), Ik € N

if A€ P, then B €7 we don’t know

if A eNPC, then L' <, A VL' eNPC. Also L' <, A <, B VL' eNPC, which implies
B eNP-Hard

if BeP, then Ae P

if 3 eNPC, then A €7 we don't know

foi

Given decision problem A whose complexity class is unknown
© Show that A € NP (i.e. that A can be verified in polynomial time)
o provide a certificate: the evidence that the solution is an instance of A
e provide a verification procedure that checks if the certificate is valid
@ Show that A €NP-Hard (i.e. A is at least as hard as all other problems in NP)

o determine problem L’ €NPC you will reduce from (often given)
e show L' <, A, i.e. find polynomial reduction fst. [ € L' < € A

Note: we reduce known to unknown, i.e. start with an instance of a known NPC problem, and
tranform it to unknown problem. You should not start with the unknown problem and reduce it
to known problem.

24. Conversion algorithm: 3-CNF-SAT to clique

o Code

f on input ¢ (a 3CNF formula with m clauses) :
G := an empty graph
For each literal £; € ¢ :
Add a vertex v; to G
For each pair of literals £;,7 ; € ¢ from different clauses :
If f,‘ = "‘fj c
Add an edge (v;,vj))t0 G
Return (G, m)

o Proof: show that this transformation of ® into G is a reduction.
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=> Suppose that ¢ has a satistfying assignment.

3-CNF-SAT (@v-mEv-AClvEviE A —Ev - |v- -
supese, Yo formada 1S SeVsHiob\R | than o suﬁS‘Fy?v\a'
Bssignmest means each clouse hons oot least 1 Ihered =1
Phus, prekrng 1 True ttem| from each clavss, |
withh "‘0""‘*“““001'*3\(%. Assia.nmmr; les a St Y of £ vetias
> V'is o c(v'qula

€ Suppose that G has a clique V’ of size k
Supposa. G has a tligue Y °'f‘ siee Kk

No odge from o, sawa +riple D ' has ome verkx por briple

= one vVeyfex per claus , none- controdiction,

yralds o Umsistesk o\ss?gnmw sm‘t&s-{-y?mj all clouggg

Show Whrere ISWE o e.a‘bns-fyhg assrjnmo«*

for Y formunla) Vihen bhe moximunam c,()c/u{ SR AHQ/VRO\‘\"W
S <m. ;
25. Vertex cover
e Definition:

A vertex cover of an undirected graph G = (V, E) is a subset V' C V such that

if (u,v) € E, thenu € V' orv € V' (or both)
the edges in E.

°

Each vertex covers its incident edges, and a vertex cover for G is a set of vertices that covers all
Size: the number of vertices in it.

has a vertex cover {w, z} of size 2.

It is the set of vertex that combine together can cover all edges of the graph (the edge that comes
out of the vertex)
26. Vertex-cover problem

* The vertex-cover problem is to find a vertex cover of minimum size in
a given graph.

* Decision problem: determine whether a graph has a vertex cover of a
given size k.

27. Theorem: vertex-cover problem is NP-complete
@ VERTEX-COVER € NP

Certificate: subset /' C V'
Verification algorithm:

- [V'|=k

- for each edge (u,v) € E, thatu € V' orv € V'.
) CLIQUE <, VERTEX-COVER

Intuition: This reduction relies on the notion of the “complement” of a graph.

_ Given an undirected graph G = (V, E), we define the complement of G
as G = (V,E), where E = {(u,v) :u,v € V,u #v, and (u,v) € E}.

G is the graph containing exactly those edges that are not in G
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28. Traveling Sales Man problem

In the traveling-salesman problem, which is closely related to the hamiltonian-
cycle problem, a salesman must visit n cities. Modeling the problem as a complete
graph with n vertices, we can say that the salesman wishes to make a tour, or
hamiltonian cycle, visiting each city exactly once and finishing at the city he starts
from. The salesman incurs a nonnegative integer cost ¢(i, j) to travel from city i
to city j, and the salesman wishes to make the tour whose total cost is minimum,
where the total cost is the sum of the individual costs along the edges of the tour.

TSP = {{G,c,k) : G = (V, E) is a complete graph,

¢ is a function from V x V — Z,

k € Z, and
G has a traveling-salesman tour with cost at most k} .

Theorem: TSP is NP-complete.
@ TSP belongs to NP
Certificate: sequence of n vertices

Verification algorithm: this sequence contains each vertex exactly once,
sums up the edge costs, and checks whether the sum is at most k. (ploy-

time)
@ TSP is NP-hard HAM-CYCLE <, TSP
o G =00, B) by the Tnstonce of HAM-Cfe
o 5’=CV;E’) - - - = = - T€P<61C,®

gl= b ig eV md j#i3

Theorem: TSP is NP-complete. comee

@9 TSP belongs to NP

@certificate: ib\_a( e&ﬁgg,/ cnquwu E-P verH cg
Verification algorithm: (@ checle e cest | £ 7]

@ TSP is NP-hard @ check if we unrt ad s

VertiCes oxakly  bates poy

—Buna

@lek o groeh & =CVE) , we Y <o fmd a
Ham~— CTAE en &,

@ tomplete & o & compldk yro &'

G assign est o Cooh  edfe.

TSP — near-optimal solution

Idea: Construct a minimum spanning tree, do a preorder walk of the tree, and
construct the TSP tour in the order in which each vertex is first visited during the
preorder walk.

APPROX-TSP-TOUR(G, ¢)

1 select a vertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7' for G from root r
using MST-PRIM(G, ¢, 1)

3 let H be alist of vertices, ordered according to when they are first visited
in a preorder tree walk of T

4 return the hamiltonian cycle H

Time: Easy to make Prim’s algorithm run in O(V'?) time. The rest is @(V), so
total running time is O(V?).

Theorem

APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the trav-
eling-salesperson problem with the triangle inequality.



29. NPC solving method
e Remember to write QED overall
e Show that one belongs to NP:
- Use the conversion algorithm
- Certificate: usually uses the question proposed in the content.
- Verification Process: Verify that the check process of the certificate can be run in polynomial
time.
e Show that one belongs to NP-hard:
- Use the reduction algorithm
- e.g. 3-CNF-SAT & 4-CNF-NAE-SAT
- Transformation: create a 4-CNF-NAE-SAT from 3 CNF-SAT by adding a z component to every
clause, name it as a circuit prime.
- Equivalence proof: giving the instances from both sides, to prove one is equal to another.
- Forward way proof
- Backward way proof
30. NPC Ham-Cycle solving method

@ Hamiltonian Cycle: Given graph G=(V,E), find a simple cycle through all vertices in V.

@ Hamiltonian Path: Given graph G=(V,E), find a simple path through all vertices in V

Ham-Cycle € NP
o Certificate: the cycle v; — -+ — v, — v (poly size)
@ Verification procedure: check all vertices appear exactly once except the first and last

which equal each other O(V)
check that all edges in path exist in E/, O(F) (poly time)

Example:

HAM-CYCLE € NP-Hard via Ham-Path <, Ham-
Cycle

Transformation: Given: (i = (V, E) be an instance
of Ham-Path

Contruct: ' = (V',E') with V' = V U {«} and
E' = EU{(x,v),(v,z):veV}in OV + E) (poly

time)

Claim: () € Ham-Path < (G") € Ham-Cycle
Equivalence Proof: (=) Suppose v —» -+ — w,
is Ham-Path in G then vy — -+ = v, — 2 — vy is
a Ham-Cycle in ¢

(«=) Suppose v; — -+ = v, —» x — v is the
Ham-Cycle in G/

then vy — --- — v, is a Ham-Path in G.

31. Combinatorial Equivalence Checking (CEC)

@ CEC: given boolean formulas A(z:,...,z,) and B(x1,...,x,) does there exist an assignment s.t.
Alxy,.cyzn) # B(z1,...,zn)
@ Formula-SAT: given boolean formula F(y1, ..., yn) does there exist an assignment s.t. F(y1,...,yn) = 1
CEC € NP
@ Certificate: The assignment of =, ..., x,, (poly size)
@ Verification procedure: Evaluate A(x1,....x,) and B(x1,....,z,). This takes polynomial time w.r.t. number of

clauses. Check if A # B O(1)

CEC € NP-Hard via Formula-SAT <, CEC

Transformation: Given: a boolean formula F

Construct: A = F and B = 0 in poly time

Claim: (F') € Formula-SAT < (A, B) € CEC

Equivalence Proof: (=) suppose Jy1,...,yn St. F(y1,..,yn) =1=>A=F(y1,...,yn) #0=B
<= suppose Y1, .., Yn St. AF#F B = F(y,...,yn) #F 0= F(y1,...,yn) = 1
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32. Half-3-CNF-SAT

Half-3-CNF-SAT: Given 3-CNF formula ¢ with n variables and m clauses. Does there exist an assignment to ¢ s.t.
exactly m/2 clauses evaluate to 1 and other m/2 evaluate to 07
Note: (z v z V y) is allowed.

Half-3-CNF-SAT € NP
@ Certificate: the assignment (poly size)
@ Verification procedure: evaluate all clauses and check exactly half evaluate to 1 and half to 0, O(n) (poly time)

3-CNF-SAT <, Half-3-CNF-SAT

Transformation: Given: 3-CNF formula @©

Construct: add 3 variables p,q,r and let &' = ® A (pV PV q)™ A(pV gV )2 (first bracket is always true, second
bracket either all true or all false) in O(n)

Claim: (®) € 3-CNF-SAT < (&') € Half-3-CNF-SAT

Equivalence Proof: (=) Suppose 3 assignment s.t. ® = 1 =, Let p = q = r = 0 and exactly 2m out of 4m clauses in
@ are 1

(<) Suppose exactly 2rn clauses in ®’ are 1. We know m of them come from (p V p V ¢) clauses, so the other m clauses
must come from @

33. Partition
@ Partition: Let S be set of positive integers, then exists 51,52 C Ss.t. S; U S =S5 and 51 N Se = 0 with

S51=35

@ Subset-Sum: Let S be a set of position integers and ¢ be an integer, 37" C Ssit. Y T =1t

Partition € NP
@ Certificate: the subsets S| and Sa
@ Verification procedure: check that S; and S» are a partition of S, O(|S]). Check that 37 51 = 3 S92, O(]S]).

Subset-Sum <, Partition

Transformation: Given: set S and target {

Construct: Let s =3 5, let 8"’ =S U {s— 2t} in O(|S])

Claim: (S,t) € Subset-sum < (S’) € Partition

Equivalence Proof: (=) suppose 371 C S's.t. 3 71 =t, then Th = S \T1 has > 7> = s —t. So
ZTL U {S — Et} =s5—t Let S1 =T U {-‘-f — 2f.} and So =Ts

(<) suppose 351,58, C §'st. >.S1 =355, note 351+ 352 =3 5+ (s — 2t) = 2s — 2t, thus
ZS’J_ :Z.‘;g =s5—1i

suppose s — 2t € Sp, then S|\{s — 2t} =t = IT =S 1\{s -2t} C Swith > T =1¢

34. Graph 3-Coloring

@ 3-col: given (¢ = (V, E) can you assign 1 of 3 colours to each vertex s.t. no vertices that share an edge are the
same color.

foe

UNIV

@ k-clique-cover: given ¢ = (V, E) and integer k, can we partition V into Vi, Vo, ..., Vj. s.t. each V;

3-col € NP
@ Certificate: the color assignment of each vertex

@ Verification procedure: check color assignment contains < 3 colors, O(V). e
Check for each edge (u,v) that color[u] # color[v], O(E).

3-clique-cover <, 3-col

Transformation: Given: G = (V, E)

Construct: G' = (V, E') with E = {(u,v) € VXV : (u,v) ¢ E} (Compliment graph)
in O(V + E)

Claim: (G) € 3-clique-cover < (G') €3-col

Equivalence Proof: (=) suppose G has clique cover, color each vertex in V; a different
color, then color[u] = color[v] = u,v € V; = (u,v) ¢ E'

(«=) suppose i/ is 3-colorable, color[u] = color[v]= (u,v) ¢ E' = (u,v) € E -+
so the set of all vertices with the same colour forms a clique in (. y TOR




Approximation Algorithm

General
1. Approximation Ratio
Denote: Trade-off: Time complexity vs p(1) |

* Inputsize: n

* the solution value of the approximation algorithm as C
* the optimal solution value is C*

For maximization problem: 0 < C < C*

For minimization problem: 0 < C* < C

*  We say that an algorithm for a problem has an approximation ratio of p(n)
minimization maximization

clcr
— <
ool = e

If an algorithm achieves an approximation ratio of , we call it a p(n)—ﬂpproximation algorithmn.

max

Tutorial
2. Definition

Approximation algorithm: An algorithm that returns near-optimal solution.

Approximation ratio p(n): if for any input of size n the cost C' of the solution produced by the
algorithm is within a factor of p(n) of the cost C* of an optimal solution. p(n) > 1

@ Minimization problem: ((* < p(n)

@ Maximization problem: ((— < p(n)

p(n)—approximation: if the algorithm achieves an approximation ratio of p(n).
Note: usually, p(n) is a constant.
Most of the problems (also relevant to real-life, e.g. 0-1 integer programming! and games) are NP-complete?. We want

to be able to efficiently find near-optimal solutions to those problems in poly-time. Here is where the approximation
algorithm comes into place.

Polynomial-time p(n)-approximation: a p(n)-approximation that runs in polynomial time.

Examples*:

@ Local Search (Greedy): start with a random feasible solution, then incrementally modify the solution to achieve
local optimality using heuristics.

@ Relaxation: drop the hard terms. e.g. in integer programming, minc¢’'z s.t. =; € {0,1},17z > 1 can be relaxed to
mine’z st 172> 1

3. Vertex Cover 2-approximation

Algorithm: Choose any edge ¢ = (u,v) from G = (V, F), add u. v to the covered set C,
remove all incident edges on u,v. lterate until no edges remain in G.

Prove that the algorithm is 2-approximation.

Proof: Let A denote the set of edges the algorithm picks, C* be the optimal vertex cover.

C'* must cover at least one endpoint of each edge in [, and thus at least one endpoint of each
edge in A.

Since no 2 edges in A share common endpoint, then no 2 edges in A are covered by the same
vertex in C*.

For every v € C*, there is at most one edge in A connecting v, |C*
Each edge in A should connect to 2 vertices in C, so |C| = 2|A| (2).
By (1) and (2), |C] = 2|A| < 2|C*|

A

=

(1).



4. 2D TSP with triangle inequality

Assume (G = (V, E/), with the cost for each ¢ = (u,v) € I
satisfying ¢(u, w) < e¢(u,v) + e(v, w).

Algorithm: Compute MST 7' of G from a random start node ©.
Let H be a list of vertices ordered according to pre-order traversal
of T, return Ham-cycle of H.

Prove that the algorithm is 2-approximation.

Proof: Let H* be the optimal tour (a Ham-cycle), deleting any of the edge gives a spanning
tree with non-negative edges.

A MST T gives a lower bound ¢(7") < ¢(H*) (1).

A full walk W of T traverses every edge of T exactly twice, ¢(W) = 2¢(T) (2).

By (1) and (2), ¢(W) = 2¢(T") < 2¢(H™)

Full walk visits some vertices more than once, so not a tour, but by triangle inequality, deleting
a vertex v in the sequence u, v, w, which gives a direct connection u — w, decreases the cost

univiesihy or

c(H) < ¢(W). Thus ¢(H) < 2¢(H*) & TORONTC
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Final Review Slides

Topics
1. Asymptotics and Recurrence
Pua= D) & Icmere . sb. V2 o gefin) SCJ1n). | €
Asymptotics: ZM" fir.
e Defining 0,Q,0 .
@ Describing runtime/space complexity using asymptotic notations in best/expected@
cases Quiksok. Bodoe  opedel e porst s
)
) (o) Ly
Recurrence: e
e Master's Theorem (3 cases)< OCZ') O(u») O(u®)
@ Recurrence Tree + Substitution Method _;Z—I;hﬁ
=T(& L n & " ke
T =T TR i/ ‘\% o 3 ok ot Goek lagl
/ ~N / > " " H-P"i w0 _ L"‘)
Woon ke BegrET 20
4 % A
. Loy & TORONT(

2. Proof Techniques
Proof Techniques:
e Combinatorial Argument
e Induction (Weak/Strong)
e Contradiction
e Bi-conditional (Equivalence) Proofs , . (= ) 6%'
p wis L'eMc

3. Heaps and BST and RBT
Heaps:
@ Definition of a heap
@ Properties of min/max heaps
@ Runtime of Build-Heap O(n) (n: the size of the heap)

Binary S.e.'a-rf:h Tree/ Rec! Black Tree  balan o tees.
Definition/Properties of BST and RBT.

e Traversal: O(n)
e Runtime of searching algorithms on BSTs - O(nh) = O(n?)
@ Runtime of searching algorithms on RBTs - O(nh) = O(nlogn)



4. Sorting
Comparison based sorting: ros) Acw-‘-"j ACL-- n]
@ Mergesort - O(nlog n)g peswe. ( sored ) CW
@ Heapsort - Ofrlogs)-

e Quicksort - O(n?)

o Idea of Partition il wast e
_a_ldea of Randomized Algorithms - reduce Pluowst com)  Comncb
(e _Strong induction proof of correctness for recurrent algorithms

.S . sunebe.
Non-comparison based (finite key sefskonly) v v o 'JRM to all Clowants 1 gati{ouua-ﬂvw{
Yo Congie (ahels
e Counting sort - O(n + k) RPN

e Radix sort - O(d(n + k))

5. Algorithm Design

Algorithm Design

@ Algorithm: start with some algorithm that correctly solves the problem, rather than trying
to figure out the most optimal algorithm at first. For example,

@ Start with li inear. searc brute force)
© Optimize with so binary searcéf/(or other divide and conquer algorithms)

© Apply data structures (e.g. Heap) if they help
@ Proof of Correctness (D
o Runtime Complexity &
@ Space Complexity ©

A sub-optimal but correct algorithm gives you most of the marks. But an incorrect algorithm
with correct complexity gives no mark. More detail in the midterm review slides. HW2 has
good examples.

6. DP and Greedy

Dynamic Programming:

v 1
§, _ univERsITY oF

e Optimal substructure
e Overlapping subproplems

@ Recurrence + orization (Memoization)
b pblem once ard veve Beolbrn,

Greedy:
o ldea: locally optimal solution leads to a global optimal solution. Good as approximation.
@ Reduction to smaller subproblem
-—__-__—-___——.

e First Greedy choice property
e Optimal substructure nobwecessasly  owdegpig Subprblen. s
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7. Hashing and Amortized Analysis
Hashing:
@ Definition of a hash function, load factors etc.
e Collision resolution
@ Chaining (could have bad run time)
@ Linear probing (subject to clustering)

" wsle DS,
Amortized Analysis: + o basel on SQpence of arwﬁhs On asing

o . . . pashing
@ Definition of amortized runtime O, = fi.--wf *° e A-c
s '

oP, O T o
o Aggregate Analysis gl GosbCi  You ke 0 = '
@ Accounting method "% $ L-czo wre{un

e Credit invariant Ut it is pessibe for Ei-G<O fov sore Ve
o Relation between price charged for each operation credits, and the actual cost of each
operation # coedet sordl on Be chinsbuctoe witn spe proped] P-WTS - Credic sl SUSTT
P : witn k Qlmets bos 4k storal =2 Crdht, waorase, &
€4 P stuck , D G oot e isiald,

8. Graphs and MST
Graphs
e Terminology for graphs: vertices, edges, paths, cycles, etc.

e Basic proofs relevant to graphs.

Elementary Graph Algorithms: <SP i llohes wanids =1
- w )
o Breath-First Search - O(V + E) jmu _ boruand ehie [ rss Sge. de e Geph

o Depth-First Search - O(V + E)“ dveder — only W/WC"E'/"C& 7

@ Topological Sort - O(V + E)& guly usshe| fir 0AG .
FFEL& PA‘G', KGW('& .Q..;( <cC (205)

Minimum Spanning Trees: ” 2 /;? Do iy € inconsets © twbo Tramdlti—
. . ! od authiar e0le + 62 rBeorned
e Prim's Algorithm - O(Elog V') N | £ L%wwﬂ?‘ ot {
e General proof for MST by contradiction: Adding an edge to an MST creates a cyde .......v
w (T\ey V) < w(T J TORONT

9. SSSP and Max Flow

‘__{;d[vj,gfcu-f{' U erV) trae

Single-Source Shortest Paths: )= G+ W) é'd‘“':le fuz b0 ackue
o Edge relaxation - O(1) < W= U o
@ Bellman-Ford - O(V E) (no negative cycles) & oz« debect  kejueignts cpetes
° Dijkstra -Oo((V +-E) log V') (no negative edges) SOSP- 4l colalleby S55P
e Difference Constraints (Bellman-Ford) A PSP
e Pseudo Start
e Negative cycle = no solution
e Valid SP Distance = feasible solution
£ @Hc:,@ tre vecdudd Goph is.
Max Flow ) e X "
o Definition of flow and residual networks + 5‘\1-7-»*'-‘
@ Max-Flow-Min-Cut Theorem fod —E Chooe  ubsc rpndowly. " o

o Edmonds-Karp (Ford-Fulkerson + BFS)  GK chooses pabs usiof BFs. o & TORONTO
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10. Complexity Theory

Complexity Theory:
@ Definition of P, NP, and NPC
e Prove that L eNPC ie. LlepA wptod.

o Prove L eNP N ol

o Certificate; the evidence that the solution is an instance of A (poly size) 1
o Verification Procedure: checks if the certificate is valid (poly time)2

° Prove@g,, L for some known L’ eNPC 18/
K ’ ! . ,4 L ‘Jw
e Meaning of L' <, L 6|Ma.iucb—¢4(- , how Yo O G it G inslimie
o Transformation; Polynomial time reduction from L' to L

o Equivalence: Prove that | € L' < a € L. i.e. solving an instance in L" < solving an instance

in L
' B, B<pC
Lis haiti L , | A< e 7P
: in L ol te. Erp- A o
0 fou can o s s oL &Ltf;’ aat BT e b WP
Mhﬂsm %um @M [)wuw !P ' CWM ": UNIVERSITY OF
: A-olet . & TORONTO
11. Approximation Algorithms
Approximation Algorithms: G et ,_des:; o F‘")'CK'

o Definition of p(n)-Approximation We Canalidss
@ p(n) > 1in CLRS and this course em
e Minimization i%fgt—w < p(n) — »—’a;/g_%—)
e Maximization a::r:x < p(n) :f‘:ﬁ opprcmeldt

Qs ‘

e 1 2A A p gt e pobla loast el
- nl, - :
B whgis €
“) s @AM
Ul ((x‘ nbe (P72, CC -—C'I?‘“
W" e ’ mlm %“JF o “S UNIVERSITY OF
% TORONTO

Data Structures
12. Heaps

Definition: A heap is an array A = [ay,as, ..., a,] of elements such that:

o Heap shape property: the heap is an almost complete binary tree (all except the last row is
full)
e Heap order property:
o Max-heap: Vi, A[parent(i)] > Ali
e Min-heap: Vi, Alparent(i)| < Alil
Indexing parents and children (Assume index of array starts at 1)
o parent(i) = ||
o left(i) = 2i
o right{i) =2i+1

44



13. BST
BST properties:

o If y is in the left subtree of z, then key[y| < key|[z]
o If y is in the right subtree of z, then key[y] > key|[z]
Key Take-Aways
@ In general, if a BST has n nodes, i = O(n). Only if the BST is balanced, i = O(logn)
@ Minimum/Maximum and searching for any arbitrary key O(h)
o Successor/Predecessor O(h)
@ Insertion/Deletion O(h)
@ Build-BST: O(n?) worst case (chain)

14. RBT

Red Black Tree is a Binary Search Tree with the following additional properties:
@ Every node is either red or black

The root is black

All leaves (NIL) are black

If a node is red, both its children are black

For all nodes, all paths to all leaves have the same black-height (number of black nodes on
path to a leaf, not including itself, but including NIL)

Key Take-Aways
@ RB Trees are balanced h = O(log n)
@ All read-only operations (e.g. traversals) are all the same as BST
@ Rotation O(1)
15. Hash Tables

Let U be the universe, K C U a set of keys. 7" a table of size m with indices {0,...,m — 1}

A hash function i — {0,...,m — 1} maps objects in the universe to the indices (hashes key
k€ K toindex h(k))

&
B UNIVERSITY OF
* TORAONTE

Good hashing scheme:

o Simple uniform hashing: any given element is equally likely to be hashed into any of the m
slots.

@ Good mechanism for collision resolution (since m < |U

, there could be collision)

Collision Resolution:
o Chaining

e Linear probing
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