
APS 360: Introduction to Artificial Intelligence
Lynne Liu | klin.liu@mail.utoronto.ca | APS360 Final Review Package
The notes are in backward order; the latest is the first.

Transformers...8
General... 8

1. Quick Recap... 8
Attention Mechanism.. 8

2. Attention Mechanism.. 8
Transformers...8

3. Transformers...8
4. Attention in transformers...9
5. Multi-head attention.. 9
6. Transformer encoders...9
7. Positional Encoding.. 9
8. Pytorch implementation.. 10

Transformers for Language Modeling...10
9. Language Modeling.. 10
10. BERT (Bidirectional Encoder Representations from Transformers)... 10
11. Input Embeddings... 10
12. Task 1: Masked Word Prediction.. 10
13. Task 2: Next Sentence Prediction... 11
14. Transfer Learning.. 11

Transformers for Computer Vision.. 11
15. ViT (Vision Transformers)..11

Graphical Neural Networks (GNN).. 12
1. Motivation..12
Deep Sets... 12

2. Sets...12
3. Deep Sets... 12

Graphs.. 12
4. Transformers without positional encoding...12
5. Graphs in general... 12

GNN..12
6. Predict links between nodes... 13
7. Message-Passing... 13
8. Read-out (graph pooling) function.. 14
9. GNN models... 14
10. Graphical convolutional networks (GCNs).. 14
11. Deeper with GNNs.. 14
12. Graph Attention Networks (GAT).. 15

Pytorch Implementation.. 15
13. Dense Implementation.. 15
14. Sparse Implementation... 15
15. DataLoader & Dataset.. 16

Generative Adversarial Networks... 18
Generative Models..18

1. Identify different models..18
2. Generative learning...18

1

mailto:klin.liu@mail.utoronto.ca

3. Generative models..18
4. Problem with autoencoders.. 18

Generative Adversarial Networks... 18
5. Generative Adversarial Networks... 18
6. GAN model... 18
7. Pytorch implementation.. 19

Problems of Training GANs.. 20
8. Vanishing Gradients..20
9. Mode Collapse.. 20
10. Failing to Converge...20

Applications of GANs..20
11. Grayscale to Color.. 20
12. Conditional Generation... 20
13. Style Transfer..20

Adversarial Attacks... 20
14. Adversarial Attacks... 21
15. Targeted/Non-targeted Attack... 21
16. White-Box/Black-Box Attacks... 21
17. Applications...21
18. Defense Against Adversarial Attack..21

Recurrent Neural Network... 22
Motivation..22

1. Autoencoders:...22
● used to learn an embedding space..22
2. Numerical Features...22
3. One-hot encoding... 22

Word Embeddings.. 22
4. Characteristics.. 22
5. Text as Sequence... 22
6. word2vec...22
7. Skip-Gram Model.. 23
8. CBOW (Continuous Bag of Words) Model..23
9. CBOW versus Skip-Gram... 23
10. GloVe: Utilizes the global statistics... 24
11. PyTorch GloVe Embeddings... 24

Distance Measures... 24
12. Measure of distance in the embedding space.. 24
13. Word Analogies...24
14. Bias in Word Embeddings...24

Language Models... 24
15. Language Modelling..24
16. Working with Text..25
17. Sentiment Analysis... 25
18. Limitations...25

Recurrent Neural Networks (RNNs)..26
19. RNNs.. 26
20. RNN Layers.. 26
21. PyTorch Implementation... 26

2

22. Sequential Learning.. 27
23. Different RNN models... 27
24. Different types of prediction.. 28

Limitations of Vanilla RNNs...28
25. Problem...28
26. Exploding/vanishing gradients.. 28

LSTMs & GRUs.. 28
27. Gating Mechanism.. 29
28. Long Short-Term Memory (LSTM).. 29
29. Different gates for LSTM...29
30. Gated Recurrent Unit (GRU)...30
31. LSTM/GRU versus RNN... 30
32. PyTorch implementation..30

Deep & Bidirectional RNNs...31
33. Bidirectional RNNs..31
34. Deep RNNs...31
35. PyTorch implementations..31

Sequence-to-Sequence Models..32
36. RNN Model Types...32
37. Hidden State Differences.. 32
38. Sequence-to-Sequence RNNs..32
39. During training...33
40. Teacher forcing... 33
41. During Inference... 33
42. PyTorch implementation..34

Unsupervised Learning..35
Motivation..35

1. Challenges with Supervised Learning...35
2. Feature Clustering:... 35
● Learn the underlying patterns, then need a few examples just to label...35
3. Definitions... 35

Autoencoders..35
4. General information.. 35
5. Applications...35
6. PyTorch implementations..36
7. Stacked Autoencoders..36
8. Denoising Autoencoders...36
9. Generating New Images with Interpolation... 36

Variational AutoEncoders (VAE)... 37
10. Characteristics.. 37
11. Different types autoencoders.. 38

Convolutional autoencoder... 38
12. Convolutional autoencoder... 38
13. Transposed Convolution... 38
14. Padding...38
15. Strides...38
16. PyTorch implementations..38

Pre-training with Autoencoders...40

3

17. Pre-training... 40
Self-Supervised Learning..40

18. Self-supervised learning with pretext tasks...40
19. RotNet...40
20. Contrastive Learning...40
21. SimCLR...41

Convolutional Neural Network.. 42
Motivation..42

1. Inductive reasoning:..42
● Start with an observation, leads to a possible generalization hypothesis. Valid observation may lead
to different hypotheses, some of them can be false... 42
2. Inductive bias.. 42
3. Downsides for using a large fully connected network... 42

Convolution Operator..42
4. Convolution... 42
5. Convolution in 2D for images..42

Convolutional Neural Networks...43
6. Biological Influence... 43
7. Detecting:..43
● The output (activation) is high if the feature is present.. 43
8. Feature:...43
● something in the image, like an edge, blob, or shape... 43
9. Convolutions with learned kernels:... 43
● share the same parameters across different locations (assuming input is stationary)........................ 43
10. Characteristics.. 43
11. CNNs...43
12. Forward and Backward pass.. 44
13. Zero Padding.. 44
14. Stride...44
15. Computing the output size.. 44
16. Convolutional Neural Networks (ConvNets or CNNs)...44
17. CNN on RGB.. 44
18. Convolution on RGB input.. 44
19. Detect multiple features.. 45
20. Convolution on RGB input example..45

Pooling Operator (something that reduces resolution)... 45
21. Consolidating information... 45
22. Max pooling (High-pass filter)... 45
23. Average pooling:... 46
● Compute the average value as the selected value..46
24. Stride convolution:.. 46
● Shift the kernel by s (e.g. s = 2) when computing convolution...46
25. CNN Architecture Blueprint...46

Pytorch implementation...46
Visualizing convolutional filters..47

26. CNN filters/feature maps look like...47
27. CNNs learn what features...47

CNNs in Pre-Deep Learning Era...47

4

28. LeNet.. 47
29. On the eve of deep learning..48
30. Deformable Parts Models... 49

Modern Architectures..49
31. ImageNet.. 49
32. AlexNet... 49
33. Data Augmentation... 50
34. Generalization and Depth... 50
35. New model to solve this problem.. 51
36. Inception block.. 51
37. Pointwise (1*1) convolution...51
38. Auxiliary Loss..51
39. VGG (Visual Geometry Group, Oxford).. 52
40. Residual Networks.. 52
41. Skip Connections (residual Networks).. 52
42. ResNets.. 52

Transfer Learning..53
43. Learning Visual Features.. 53
44. Transfer Learning using Embeddings... 54
45. Fine-tuning for transfer learning..54
46. PyTorch implementation..54

Artificial Neural Networks.. 55
Neuron.. 55

1. General... 55
Activation Function..55

2. Activation function...55
3. Linear Activation Function...55
4. Early Activation Functions: Perceptrons... 55
5. Sigmoid Activation Function..55
6. ReLU Activation Function... 55

Training Neural Networks... 56
Loss Function..56

7. Loss function:..56
● computes how bad predictions are compared to the ground truth labels.. 56

8. Softmax function:.. 56
● normalizes the logits into a categorical probability distribution over all possible classes.......................... 56

9. Mean Squared Error (MSE):... 57
● mostly used for regression problems...57
10. Cross Entropy (CE):..57
● mostly used for classification problems... 57
11. Binary cross entropy (BCE)...57
12. Forward-Pass with Error Calculations...57

Gradient Descent (An algorithm from optimization)..58
13. Neural Network Layer (Vector, Matrices, Tensors)..58
14. Neural Network Single-Layer Training.. 58
15. Delta Rule for Single Weight/Training Sample..58
16. Forward-pass and backward-pass..59

Neural Network Architectures... 59

5

17. XOR.. 59
18. Backpropagation:.. 59

● Solving credit assignment problem..59
19. Multiple Layers with Non-Linearity.. 59
20. Neural Network Architecture... 59

Training Artificial Neural Networks... 60
Hyperparameters.. 60

1. General... 60
Optimizers...60

2. general.. 60
3. Stochastic Gradient Descent (SGD)... 60
4. Mini-Batch Gradient Descent.. 60
5. Inefficient batch size... 60
6. Gradient descent: N-Dimensional... 61
7. SGD with Momentum..61
8. Adaptive Moment Estimation (Adam)... 61

Learning Rate... 62
9. Learning rate:..62

● determines the size of the step that an optimizer takes during each iteration...62
Normalization..62

10. Reason for normalization.. 62
11. Batch Normalization.. 62
12. Layer Normalization.. 63

Regularization...63
13. Regularization:.. 63
● a set of techniques that you make the training task more difficult for the model................................. 63
14. Dropout:.. 63
● forces a neural network to learn more robust features.. 63
15. Weight decay.. 63
16. Early Stopping with Patience.. 63

PyTorch Implementation... 64
17. MNIST Dataset... 64
18. ANN.. 64
19. Loss Function and Final Activation for ANN... 65
20. PyTorch load data example...65
21. Forward and Backward Pass.. 65
22. PyTorch: Training and Validation Error..65
23. Multi-Class Classification.. 65
24. LossFunction and Softmax Activation...66
25. Output Probabilities...66

Evaluating and Debugging..66
26. Confusion matrix... 66
27. MNIST 2D Visualization.. 66
28. Debugging NN.. 67

Introduction to Artificial Intelligence.. 68
1. AI...68
2. Machine Learning... 68
3. Deep Learning.. 68

6

4. History of Deep Learning.. 68
5. Terminology Summary.. 69
6. Deep Learning applications.. 69
7. Deep Learning Caveats.. 69
8. Bias... 69
9. Machine Learning Basis..69
10. Supervised Learning... 69
11. Inductive bias (learning bias):... 70
● the set of assumptions that used for modeling.. 70
12. Mean Squared Error (MSE):... 70
● measures how close a regression line is to a set of data points..70
13. Error and loss..70
14. Bias versus Variance Tradeoff.. 70
15. Training and Testing Data... 70
16. Validation and Holdout Data... 70

7

Transformers
General

1. Quick Recap
● RNNs: model sequences -> cannot be paralleled -> inefficient
● Vanilla RNNs: cannot catch long dependencies since exploding/vanishing gradients
● LSTMs/GRUs: more preferred

Attention Mechanism
2. Attention Mechanism

● Components
- Attention score: importance level of each ‘word’
- Aggregate the data based on this score

● Example: Classifying tweets based on attention
- FC layer: taken in embeddings -> single score for each embedding
- Normalize the scores: softmax
- Weighted summation: result = sum(embedding * score)
- Trained end-to-end with classifier

● Attention in RNNs
- RNN without Attention: Taken the last hidden state as the representation of the whole

input sentence.
- RNN with attention: input -> embedding -> got the hidden state from each direction

(Bi-direction encoder) -> attention score -> compress together -> decoder -> output

● Attention Taxonomy
- cross-attention: capture relationship between two sequences (e.g.: translate two

languages).
- self-attention: for a given token of the input, compute attention weight for all other tokens

in the sequence.
● Compute attention score

Transformers
3. Transformers

● Computing the similarities between raw data and the key (k), computing each key, output the
value with highest similarity score

8

4. Attention in transformers
● Attention transformer model

- soft retrieval: retrieves all the values -> compute their importance wrt query, based on
the similarity between the query and their keys

- values, queries, keys, are d-dimensional embeddings

● Compute value, key, query (X as input)

● Self-attention in transformers
- New representation of each token based on weighted combination o other tokens

(contextual representations)

5. Multi-head attention
● To improve the performance

- Divide representation space to h sub-spaces
- Run parallel linear layers and attentions
- Concatenate them back to form the original space

6. Transformer encoders
● Each encoder layer consists of:

- A multi-head self-attention sub-layer
- A fully-connected sub-layer
- A residual connection around each of the two sub-layers followed by layer normalization

7. Positional Encoding
● When model does not have recurrent or convolutional layers -> doesn’t consider the order of

sequence
● Use this to allow the model to easily learn to attend by relative positions

9

8. Pytorch implementation

Transformers for Language Modeling
9. Language Modeling

● Word2Vec/Golve
- Learn static embeddings
- One embedding for all senses

● Solution: use a self-supervised objective (e.g. predicting the next word) -> learn embeddings
over tokens

● RNNs/Transformers
- Learn contextual embeddings
- ‘Training’ the embedding model at the same time -> embedding of a same word

changes according to the sentence it appears in
10. BERT (Bidirectional Encoder Representations from Transformers)

● A Transformer model trained with two self-supervised tasks
● Shows great transfer learning capabilities
● Achieved SOTA results on various NLP tasks
● Being used in Google search engine to represent user queries and documents

11. Input Embeddings
● [CLS] -> indicates the start of the text; specific to classification tasks
● [SEP] -> marks the end of a sentence, or the separation between two sentences
● Sentence Embedding: Specifies each token belongs to which sentence, sentence 0 (vector of

0s) or sentence 1 (vector of 1s)

12. Task 1: Masked Word Prediction
● Replace 15% of the words, at random, with [MASK] token
● Using the context of non-masked words, predict original value of [MASK] token
● Loss: computed on just the masked word (contrast with next word prediction)

10

13. Task 2: Next Sentence Prediction
● Determine whether two given sentences are consecutive or not in a larger corpus of text
● Create 50% positive and 50% negative pairs of sentences (less than or equal to 512 tokens)
● Loss function: BCE
● The model's final layer outputs a probability score, and this score is compared to the ground

truth label
14. Transfer Learning

Transformers for Computer Vision
15. ViT (Vision Transformers)

● Achieve higher accuracies on large datasets compared to CNNs
- Higher modeling capacity
- Lower inductive biases
- Global receptive fields

● CNNs better than ViTs on ImageNet in terms of model complexity or size versus accuracy
● Characteristics:

- Train the neural network with much fewer data than transformer because the
transformer is kinda learning but ViT is using

- Taken in the image, split them into small batches (sth like slices into pieces)

11

Graphical Neural Networks (GNN)
1. Motivation

● Euclidean
- CNN: 2-dimensional images
- RNN: 1-dimensional texts

● Non-euclidean
- GNN: e.g.molicues

Deep Sets
2. Sets

● If omit the Positional Encoding from Transformers:
- Order-invariance / permutation-invariance: The input will be treated as a set and the

learned representation won't change if you randomly shuffle the input tokens.
● Some data types that cannot be shuffled:

- Pixels within an image
- Words within a sentence
- Frame within a video
- Signals within an audio

● Model must be invariant to the order of the items <- the order can mislead the model
3. Deep Sets

● Learn embeddings for each item -> use a shared neural network to project each item to a
shared space

● Learn embeddings for the set -> use an order-invariant aggregation function (e.g. sum, mean,
max) to aggregate the embeddings (after aggregate is the representation of the whole dataset)
into a single embedding

● Use another neural network (e.g. MLP) to project the embedding to the final space

Graphs
4. Transformers without positional encoding

● The transformer learns an N*N attention matrix which represents a pairwise importance score
-> creates a fully connected graph over the input and learns the edge weights

5. Graphs in general
● GNNs are neural networks that function on graphs
● One base:

- Message-Passing: communicate with neighbors to update embeddings
● Graphs are order-invariant, functions on graphs must be order-invariant too
● Each graph contains an adjacency matrix, a feature matrix, and a graph
● Two characteristics:

- Invariant -> Graph function: Output does not change in response to changes in input
ordering

- Equivariant -> Node function: Output properly changes in response to changes in input
ordering

12

GNN
6. Predict links between nodes

e.g.: predicting if there should be a bond between two atoms
● Node classification: assign labels or categories to nodes in a graph based on their structural

properties and the information from neighboring nodes.
- Graph representation
- Node feature: represent information about each node in the graph
- Message passing
- Node embeddings: represent information about each node in the graph
- Classification layer: The output of this layer is typically passed through a softmax

function to obtain probability scores for each class. Usually FC layer.
- Training
- Inference

● Graph classification: assign a label or category to an entire graph or network.
- Graph representation
- Feature extraction: graph embeddings, graph kernels, or other graph-based feature

engineering methods.
- Model selection
- Training
- Evaluation: Common evaluation metrics for graph classification tasks include accuracy,

F1-score, or area under the receiver operating characteristic curve (AUC-ROC),
depending on whether the task is binary or multiclass classification.

- Hyperparameter tuning
- Inference

● Link prediction: identify pairs of nodes in the network that are likely to be connected in the future
or were overlooked during data collection.

- Graph representation
- Train-Test Split
- Feature Engineering: For each pair of nodes without an edge in the training set (i.e.,

potential links), you extract or compute relevant features that describe the relationship or
similarity between the nodes.

- Model Selection
- Training
- Evaluation
- Inference

7. Message-Passing
For each node in graph:

● Aggregate embeddings of its neighbor nodes
- Aggregate function must be an order invariant function such as sum, mean, max,

attention, etc.
● Combine the aggregated embedding with the node embedding
● Update the node embedding

13

8. Read-out (graph pooling) function

9. GNN models

10. Graphical convolutional networks (GCNs)

● Limitation 1: For every node, we sum up all the feature vectors of all neighboring nodes but not
the node itself.

- Fix: Add self-loops (add the identity matrix to A)
A = A + I

● Limitation 2: A is not normalized and therefore the multiplication with A will completely change
the scale of the feature vectors.

- Fix: Symmetrically normalize A using diagonal degree matrix D such that all rows sum to
one

14

11. Deeper with GNNs

12. Graph Attention Networks (GAT)
Learn an attention score between two nodes (e.g. learn the contribution weight of neighbor nodes)

Pytorch Implementation
Classify the following molecule using a GCN to a toxic/non-toxic where node features represent the atom type
(Carbon, Hydrogen, Nitrogen)

13. Dense Implementation
● Most graphs have mostly zeros in adjacent matrix
● It uses 2D space for adjacency
● We can represent this graph with only 4 edges where dense implementation represents it with

25
● Use PyTorch Geometric (PYG) to implement

15

14. Sparse Implementation

15. DataLoader & Dataset
● Dense implementation: batching is done by creating a diagonal matrix of adjacency matrices
● Sparse implementation: uses an index vector that maps each node to its respective graph in the

batch

16

17

Generative Adversarial Networks
Generative Models

1. Identify different models
● Identify if a tweet is real or fake

- Supervised task, discriminative model
- Approximate p(y|x) -> learns to approximate the conditional probability of a class given

the input data
- e.g.: classifier -> input img, output label

● Generate a new tweet
- Unsupervised task, generative model
- Approximate p(x) -> they are learning the probability distribution of the data itself
- e.g.: variational autoencoder -> input encoding, output img

2. Generative learning
● Unsupervised learning task

- No ground truth wrt the actual task that we want to accomplish
- Learning the structure and distribution of data, rather than labels for data
- Loss function -> an auxiliary task that we know the answer to

3. Generative models
Used to generate new data, using some input encoding.

● Different families of deep generative models:
- Autoregressive Models
- Variational AutoEncoders (VAEs)
- Generative Adversarial Networks (GANs)
- Flow-Based Generative Models
- Diffusion Models

● Unconditional Generative Models
- Random noise as input
- No control over what category they generate

● Conditional Generative Models
- User has high-level control over what the model will generate
- Encoding

One-hot encoding of the target category and random noise
An embedding generated by another model (e.g. from CNN)

4. Problem with autoencoders
● Vanilla autoencoders generate blurry images with blurry backgrounds <- compare pixel to pixel

Generative Adversarial Networks
5. Generative Adversarial Networks

● The loss function of the generator is defined by the discriminator
● Idea -> train two models together
● Generator model

- Foll the discriminator by generating real-looking images
● Discriminator model

- Distinguish between real and fake images
6. GAN model

● Loss function for MinMax game
- Loss function - BCE: Learn discriminator weights to maximize the probability for

accurate labeling
- Loss function - Discriminator: Learn generator weights to maximize the probability for

false labeling
● Two parts

- Generator network

18

Input -> a noise vector
Output -> a generated image

- Discriminator network
Input -> an image
Output -> a binary label (real or fake)

● Process
- Two things evolving together, play a min-max game
- The discriminator will try to do the best job it can
- The generator is set to make the discriminator as wrong as possible

● Training
Alternate between training the D and the G

7. Pytorch implementation
● Discriminator

● Generator

● Training the Discriminator

● Training the Generator

19

Problems of Training GANs
8. Vanishing Gradients

● Discriminator as loss function for the generator,
● If the discriminator is too good, small changes in the generator weights won’t change the

discriminator output,
● Make no gradients, can’t improve the generator

9. Mode Collapse
● If generator starts producing the same output (or a small set of outputs),

- Fix: Discriminator rejects that output
● If the discriminator is trapped in local optimum, it cannot adapt to generator,
● The generator can fool it by only generating one type of data (e.g. only digit 1)

10. Failing to Converge
● Since it takes a long time to train, we use:

- LeakyReLU Activations (training is more stable)
- Batch Normalization
- Regularizing discriminator weights, and adding noise to discriminator inputs

Applications of GANs
11. Grayscale to Color

12. Conditional Generation
How could we have a GAN trained on MNIST output only specific digits?

● Data Preparation: Load the dataset, and split it into different classes
● Conditional Labeling: Each image is paired with corresponding labels
● Generator and Discriminator Architecture:

- The generator should take random noise and the condition as inputs and generate an
image corresponding to that condition.

- The discriminator should take an image and the condition as inputs and predict whether
the image matches the condition.

● Loss functions: The discriminator should take an image and the condition as inputs and predict
whether the image matches the condition.

● Training
- During training, sample random noise vectors and corresponding condition labels.
- Input both the noise and condition to the generator to generate images.
- Input real images with their corresponding condition labels to the discriminator.
- Update the generator and discriminator based on their respective losses.
- Ensure that the discriminator learns to correctly classify real images and that the

generator learns to generate images conditioned on the label.
● Evaluation

13. Style Transfer
● Cycle GAN: Cycle loss is reconstruction loss between input to cyclegan and output of cyclegan

to ensure consistency.

20

Adversarial Attacks
14. Adversarial Attacks

● Goal: Choose a small perturbation (e) on an image (x) so that a neural network (f) misclassifies
(x + e)

● Approach: Use the same optimization process to choose e to minimize the probability
-> f(x + e) = correct class
(e) as the parameters

15. Targeted/Non-targeted Attack
● Non-targeted attack

- Minimize the probability, make the classifier to make mistakes
-> f(x + e) = correct class

● Targeted attack
- Maximize the probability, push it to make mistake at a certain type

-> f(x + e) = target class
16. White-Box/Black-Box Attacks

● White-box attacks
- Assumes that the model is known
- Need to know the architecture and weights of (f) to optimize (e)

● Black-box attacks
- Don’t know the architecture and weights of (f) to optimize (e)
- Substitute model mitigates target model with known, differentiable function
- Adversarial attacks often transfer across models

17. Applications
● 3D Objects
● Printed Pictures
● Adversarial T-Shirts

18. Defense Against Adversarial Attack
● Failed Defenses:

- Adding noise at test time
- Averaging many models
- Weight decay
- Adding noise at training time
- Adding adversarial noise at training time
- Dropout

21

Recurrent Neural Network
Motivation

1. Autoencoders:
● used to learn an embedding space
● Encoder: data -> embedding
● Decoder: embedding -> data

2. Numerical Features
● Superficial relationship

- The neural network will learn it during the training and when you want to do
generalization or inference or test your neural network, a big drop will see in
performance, because overfitted to something that is very superficial.

● Numbers have no relationship
- Integer encoding is not enough when there is no order
- An order may lead to poor performance

● Convert words into numerical features
- Treat each word as a unique feature

3. One-hot encoding
● Convert word features into numerical features with one-hot encoding.
● Turn the features into numerical features, such as if two words are completely different, the

similarity value will be zero.
● Assumes each word is completely independent
● Problems:

- Encoding -> Dimensionality increase
- One-hot encoding assumes that two boards are either identical / not identical, which

means that it cannot capture this notion of closeness that we want to have.
Word Embeddings

4. Characteristics
● Words are different from images
● Characters are not like pixels in images
● The meaning of a word is not represented by the letters that make up the word
● Meaning comes from context
● Meaning comes from the sequence of characters and how they are used in conjunction with

other words
● History: coined in 2003 (Bengio et al.)
● Two commonly used models (most famous models):

- Word2Vec model, 2013 (Mikolov et al.)
- GloVe vectors, 2014 (Pennington et al.)

5. Text as Sequence
● Key idea: the meaning of a word depends on its context
● Architecture of a word2vec model:

- Encoder: one-hot embedding -> low-dim embedding
- Decoder: low-dim embedding -> nearby words

● Process: The word at the center as the word itself, the words at left and right as its context.
Embedding considers both the word itself and its context in order to come up with end
meanings.

6. word2vec
● Two ways to train this model

- Skipgram -> Predict context from target
Flip the input and output compared with CBOW. Pass the output as input (the center
word), and the input as output (words to predict the center).

- CBOW -> Predict target from context
Pass the context words to the model and the model has to predict the centre word.

22

● CBOW is easier because it only needs to predict one word, but the SKIPGRAM performs better

7. Skip-Gram Model
● Predict context words from target word
● Skip-Gram components need not be consecutive in the text
● Can be skipped over, or randomly selected from many documents
● Different types:

- n-Gram: contiguous sequence of (n) items from a given text
- k-Skip n-Gram: maximum num of skips is (k), a combination of (n) tokens or (n) words,

to model real-world scenario
● Neighboring words are defined by the window size -> a hyperparameter
● Model

- The output layer is only used for training
- After training, only keep the weights from input to hidden layers
- Words that have similar context words will be mapped to similar embeddings

8. CBOW (Continuous Bag of Words) Model
● Predict the center word from a fixed window size of context words

- Pass in the context words, predict the center word
9. CBOW versus Skip-Gram

● Skip-Gram
- Works well with small datasets
- Better semantic relationships (cat & dog)
- Better representation of less frequent words

● CBOW
- Trains faster than Skip-Gram as the task is simpler
- Better syntactic relationships (cat & cats)
- Better representation of more frequent words

23

10. GloVe: Utilizes the global statistics
● Compute co-occurrence frequency counts for each word

- Represented as a matrix where element X(ij) demotes the number of times word (i)
appears in the context of word (j)

● Optimization: Inner product of word vectors should be a good predictor of co-occurrence
frequency

11. PyTorch GloVe Embeddings

Distance Measures
12. Measure of distance in the embedding space

13. Word Analogies

14. Bias in Word Embeddings
● Machine learning models are biased
● ML models learn the biases present in the data it is trained on

Language Models
15. Language Modelling

● Explain
- Have a model that can learn the probability distribution over a given language or other

stuff
24

- Because the language model needs to understand the semantic to be able to predict the
probability

● Learning probability distribution over sequences of words
- Text understanding
- Text generation

16. Working with Text
● Difficult for text:

- The meaning doesn’t depend on characters
- It has dependencies

17. Sentiment Analysis
● Goal: Given a piece of text, identify the sentiment that the text conveys
● Dataset: Sentiment140

- Split the tweet into words by white-space
- Look up the GloVe embedding for each word, ignoring words that don’t have

embeddings
- Add up the word embeddings to obtain an embedding for the entire tweet
- The tweet embedding will be the input to a fully connected neural network

18. Limitations
● The model does not take into account the order of words
● Fix 1:

- Concatenate the word embeddings -> train a neural network that takes the concatenated
embedding as input

- Drawbacks:
~Fixed-Length input: If your input text varies significantly in length, you may need to pad
or truncate the sequences to a specific length.
~Loss of sequential information
~Increased Dimensionality:
If you have a large vocabulary and embeddings with high dimensions, the
concatenated representation can become very high-dimensional.
lead to increased computational complexity and the risk of overfitting, especially when
you have limited training data.
~Out of vocabulary words (OOV)
~Semantic Gap: Concatenating word embeddings treats all words equally, regardless of
their importance in the task

● Fix 2:
- Concatenate the word embeddings -> train a 1D convolutional neural network that takes

the concatenated embedding as input

- Drawbacks:
~Lack of contextual information
~Local context only: 1D CNNs are effective at capturing local patterns in the input, but
they may struggle with capturing long-range dependencies or global context in the text.

25

~Generalization: Depending on the choice of hyperparameters and architectural details,
1D CNNs may not generalize well to diverse text data or handle out-of-distribution
examples effectively.

Recurrent Neural Networks (RNNs)
19. RNNs

● Take in variable-sized sequential input
● Remember things over time, or have some sort of memory or state

● Updating Hidden State: updated based on the previous hidden state and the input using the
same neural network as before (weight sharing)

● Last Hidden State: Continue updating the hidden state until we run out of tokens
- Use the last hidden state as input to a prediction network
- The whole thing is end-to-end, when you train, you get gradients here and you

backpropagate through the neural network
- The last hidden state (memory) has compressed all the information that you have seen

so far

20. RNN Layers
● In each step, it receives input and its previous hidden state and updates it, then the next input

and another update make the overall update. -> This is a feedback loop, there is a recurrence.

21. PyTorch Implementation
● RNN Architecture

26

● RNN Training

22. Sequential Learning
● In image, we do not want to learn different weights for every pixel

- CNNs use convolutional filters with parameter sharing
- CNN reuses convolutional filters for every pixel

● In sequence, we do not want to learn different weights for every token
- RNNs use a shared neural network to update hidden state
- Reuse the RNN module for every token in the sequence
- Keep the context of the previous tokens encoded in the hidden state (h)

23. Different RNN models

27

24. Different types of prediction

Limitations of Vanilla RNNs
25. Problem

● If RNNs unrolled onto a long sequence:
- RNNs can be very deep -> Depth = Length of sequence

● 2 related problems with vanilla RNNs
- Not good at modeling long-term dependencies
- Hard to train due to vanishing/exploding gradients

26. Exploding/vanishing gradients
● Problem explanation

● Fix
- Gradient clipping -> exploding gradient: if gradient is greater than a threshold, set the

gradient to threshold
- Skip-connection -> vanishing gradient:

Skip connections to all previous states -> too expensive -> preserve the hidden
state/context over the long term

28

LSTMs & GRUs
27. Gating Mechanism

● Approximate skip-connections to all previous states
- Learn to weight previous states differently instead (soft skip-connections)

● Use gates
- Learn to update the context selectively

● Gating mechanism controls how much information flows through
● Suppose X is a vector, control how much of X to pass to next step by:

- Sigmoid or Tanh
- A neural network

28. Long Short-Term Memory (LSTM)
● Components

- Long-term memory (cell state)
- Short-term memory (context or hidden state): Assigning different weights to different

hidden states
● Use three gates to update the memories

29. Different gates for LSTM
● Forget gate (long-term memory)

- How many of the historical memory should I forget

● Input Gate (long-term memory)
- How much the current input should contribute to the memory

● Output gate (short-term memory)
- In order to update the short-term memory
- How much of the updated long-term memory should construct the short-term memory

29

● Updated long-term memory: the amount of past that is remembered (decided by forget gate)
combine with the memory that was just created (decided by input gate)

30. Gated Recurrent Unit (GRU)
● Cheaper than LSTM since one less hidden state and one less gate
● Characteristics:

- Combine forget and input gates into an update gate
- Merges cell state and hidden state

31. LSTM/GRU versus RNN
● LSTMs/GRUs

- can be trained on longer sequences
- Are much better at learning long-term relationships
- Easier to train
- Achieve better performance than vanilla RNNs

● In long-term, RNNs will stick to the accuracy, but LSTM/GRU will improve even more
32. PyTorch implementation

● RNN

● GRU

30

● LSTM

Deep & Bidirectional RNNs
33. Bidirectional RNNs

● A typical state in an RNN (RNN, GRU, LSTM) relies on the past and the present
● One from left to right, the other from right to left, only take the sum of all the hidden state

● When a prediction depends on the past, present, and future, we can exploit the future to
improve performance

- e.g.: machine translation
34. Deep RNNs

● Stack RNN layers to learn more abstract representations
- First layers: better for syntactic tasks
- Last layers: better on semantic tasks

31

35. PyTorch implementations

Sequence-to-Sequence Models
36. RNN Model Types

37. Hidden State Differences
● RNNs for prediction (Encoder): compressing all information about the past

- Process tokens one at a time
- Hidden state represents all the tokens read this far

● RNNs for generating sequences (decoder): Hidden state in each time step compressing all the
info about the future

- Generate tokens one at a time
- Hidden state is a representation of all the tokens to be generated

● Autoregressive: Say one word then say the next word based on the previous word

38. Sequence-to-Sequence RNNs
● Summarize:

- Use this promo code (<BOS>/<EOS>) to communicate with the neural network to notify
starting and ending,

- Then use cross-entropy to compare the loss and do the backpropagation,
- Then introduce teacher forcing to make sure that each step we receive the perfect

ground truth predictions rather than pollution that were done by the neural network.
32

● With variational autoencoders, we have this randomness -> pass a random number into the
decoder to generate an image for us, want to have diversity

● Different types:
- Teacher-forcing: Training-time behaviour must be changed
- Sampling and temperature scaling: Inference-time behavior also changes

39. During training
● When to stop/finish a generated sequence

- <BOS>: indicate the beginning of sequence
- <EOS>: indicates the end of sequence

● In each step, RNN receives an input which is the previous prediction and is predicting a class,
so evaluate at cross entropy loss at each generation step. Each character generates a loss.
Average of the losses will be the overall loss of the sequence.

40. Teacher forcing
● Reason

- Basically, we are increasing the noise and accumulating the error so at the far end it is
difficult to predict the last character because the noise.

● Process
- In each step during the training make the prediction and compare with the ground truth

label, and compute the cross entropy loss but don’t feed the prediction as the next input.
- Basically, instead of passing the previous prediction, pass the ground-truth label to there

as the input to the next step.
41. During Inference

● Problem: Always selecting the token with the highest probability won’t work well
- In practice, this greedy approach results in lots of grammatical errors
- Using a generative model: We want diversity not deterministic behavior

● Fix: sample from the predicted distributions
- Greedy Search: selects the token with highest probability as the generated token

- Beam Search: looks for a sequence of tokens with the highest probability within a
window

- Softmax Temperature Scaling: helps with the problem of over-confidence in neural
networks by scaling the input logits to the softmax with a temperature.
~Low Temperature (larger logits, more confident):
Higher quality samples, less variety;
If set the temperature to low value, your distribution will be moved toward a one-hot
representation.

33

~High Temperature (smaller logits, less confident):
Lower quality samples, more variety;
If set to high temperature, the distribution will be very similar to uniform distribution

42. PyTorch implementation
● Text Generator

● Training Text Generator

● Sampling Text Generator

34

Unsupervised Learning
Motivation

1. Challenges with Supervised Learning
● Requires large amounts of labeled data
● Obtaining labeled data is expensive

- Medical tests are expensive -> require a specialist to review them
- Chemical data collection -> wet-lab tests are time-consuming

● For more scenarios, there is a lot more unlabeled data than labeled
2. Feature Clustering:

● Learn the underlying patterns, then need a few examples just to label.
3. Definitions

● Unsupervised Learning
- Learning patterns from data without human annotations
- e.g.: clustering, density estimation, dimensionality reduction

● Self-supervised Learning
- Use the success of supervised learning without relying on human-provided supervision

(automatic supervision)
- e.g.: mask park of the input and predict the masked information

● Semi-supervised Learning
- Learning from data that mostly consists of unlabeled samples
- A small amount of human-labeled data is available as well

Autoencoders
4. General information

● The number of outputs is the same as the inputs
● Hourglass shape creates a bottleneck layer, lower dimensional representation
● It is forced to learn the most important features in the input data and drop the unimportant ones

Find efficient representations of input data that could be used to reconstruct the original input:
● Encoder:

- Converts the inputs to an internal representation
- Dimensionality reduction

● Decoder:
- Converts the internal representations to the outputs
- Generative network

● Given a picture, encode to vector, embedding, then decode to get the original picture, compare
with the input image to see the differences.

35

5. Applications
● Feature Extraction
● Unsupervised Pre-training
● Dimensionality Reduction
● Generate new data
● Anomaly detection -> Autoencoders are bad at reconstructing outliers

6. PyTorch implementations
● Error rate: the number of things that you misclassified divided by the whole number of training

data.

7. Stacked Autoencoders
● Usually want symmetric structure between the encoder and decoder.
● Autoencoders can have multiple hidden layers: stacked (deep) autoencoders
● Output and Input size need to be the same
● One way to ensure that an autoencoder is properly trained is visualizing reconstructions

8. Denoising Autoencoders
● Noise can be added to the input images of the autoencoder to force it to learn useful features
● Autoencoder is trained to recover the original, noise-free inputs
● Prevents it from trivially copying its inputs to its outputs, has to find patterns in the data

9. Generating New Images with Interpolation
● First compute low-dimensional embeddings of two images
● Then interpolate between the two embeddings and decode those
● Interpolated coding results in new images that are somewhere in between the two starting

images
● Latent space: The space where the embedding lives on

36

● If we randomly select a coding:
- The latent space in autoencoders can become disjoint and non-continues

Variational AutoEncoders (VAE)
10. Characteristics

● Encoder generates a normal distribution with mean miu and a standard deviation sigma instead
of a fixed embedding.

- An embedding is sampled from the distribution and decoder decodes the sample to
reconstruct the input

● Before, the models we learned were all deterministic. If you give convolutional network train, if
you pass the same image twice, the output will be identical.

● Distribution calculation

● Probabilistic
- For the same input, it will give you different results every time
- Their outputs are partly determined by chance even after training

● Generative
- It can generate an infinite number of examples for you, that were not part of the training

data
37

- They can generate new instances that look like they were sampled from the training set
11. Different types autoencoders

● Regular Autoencoders -> have problem with overfitting
● Noisy autoencoders -> have problems if generate stuff for the smoothness of the embedding
● Variational autoencoders

Convolutional autoencoder
12. Convolutional autoencoder

● Use spatial information
- Encoder: Learns visual embedding using convolutional layers
- Decoder: Up-samples the learned visual embedding to match the original size of the

image
~Up-sampling: It involves increasing the size of the data from a lower resolution to
match a higher resolution. In the context of image processing, this often means making
an image or a feature map larger.

13. Transposed Convolution
● Similar to convolution, but the inverse effect of a convolution
● Instead of mapping k*k pixels to 1, they can map from 1 pixel to k*k pixels

14. Padding
● Output padding

- Output padding is provided to resolve this ambiguity by effectively increasing the
calculated output shape on one side

- It is only used to find output shape but does not actually add zero padding to output
- When stride > 1. Conv2d maps multiple input shapes to the same output shape

● The effect is the opposite of what happens with the convolution layers
- Compute the output as normal
- Remove rows and columns around the perimeter

15. Strides
● The effect is opposite from what happens with the convolution layers
● Increasing the stride results in an increase in the upsampling effect

16. PyTorch implementations
● Compare

38

● Transpose padding

● Add a stride to the convolution to increase our resolution

● Output padding type adds an additional row and column to the output

● Others

39

Pre-training with Autoencoders
17. Pre-training

● Autoencoders can achieve similar results as transfer learning by pretraining on large set of
unlabeled data, same type of data, just missing labels

● First train, satisfied, remove decoder with our own decoder

Self-Supervised Learning
18. Self-supervised learning with pretext tasks

● Proxy supervised tasks
- The labels are generated automatically for free
- Solving the task, requires the model to understand the content

● The challenge:
- Devising the tasks such that they enforce the model to learn robust representations

19. RotNet
● Idea: Rotate images and make the model to predict the rotation angle
● Multiclass classification with 4 classes (CE loss) with free labels being generated automatically

40

20. Contrastive Learning
● Autoencoding methods

- Reconstruct input
- Compute the loss in output space
- Compress all the details

● Contrastive methods
- Contrast pair of positive/negative samples
- Compute the loss in embedding space
- Compress relevant information
- Requires lots of negative examples

21. SimCLR

41

Convolutional Neural Network
Motivation

1. Inductive reasoning:
● Start with an observation, leads to a possible generalization hypothesis. Valid observation may

lead to different hypotheses, some of them can be false.
2. Inductive bias

● The prior knowledge that you incorporate in the learning process that biases the learning
algorithm to choose from specific functions might result in over-fitting and learning infeasible. It
is any type of bias that a learning algorithm introduces in order to provide a prediction.

● CNNs and inductive bias: architecture-specific biases that mostly depend on data and training
procedure, mostly are locality and weight sharing translation invariance with pooling layers,
translation equivariant without them being used.

3. Downsides for using a large fully connected network
● Computation complexity grows: harder to train
● Larger capacity: more data to generalize
● Bad inductive bias: ignores geometry of image data

- Good inductive bias in this case: use all information of the image, instead of only using
some of them

● Not flexible: Different image sizes require different models
- 20*20 to 21*21, the size is bigger so the neural network needs to be scratched

Convolution Operator
4. Convolution

● It is a mathematical operation on two functions f and g (one is the input function, the other one
is the kernel), that expresses how the shape of one is modified by the other.

5. Convolution in 2D for images
● Computation

● Multiply by a fraction
- Blurring averages out pixel intensities in an image

● The middle vertical line of a kernel all zeros
- Vertical edge detector

42

● The middle horizontal line of a kernel all zeros
- Horizontal edge detector

● Another specific kernel
- Blob detector: regions that differ in properties, such as brightness or color, compared to

surrounding regions

● Kernels
- Hand-crafted
- Classic computer vision -> multi-stage feature (kernel) engineering

Character filtering, character segmentation, character recognition
- Because you are randomizing the values initially, each kernel will convert to a different

type of feature extractor. Of don’t randomize initialization, you will have a very high
chance of learning the same feature extractor across all the currents.

Convolutional Neural Networks
6. Biological Influence

● Hubel and Wiesel Cat Experiments (1958-1959)
- Individual neurons respond to stimuli only in a restricted region of the visual field known

as the receptive field
- Collection of such fields overlaps to cover the entire visual area
- Some neurons react only to images of horizontal lines, while others react line

orientations
- Higher-level neurons are based on the outputs of neighboring lower-level neurons

(High-level from low-level)
7. Detecting:

● The output (activation) is high if the feature is present
8. Feature:

● something in the image, like an edge, blob, or shape
9. Convolutions with learned kernels:

● share the same parameters across different locations (assuming input is stationary).
10. Characteristics

● Notion of proximity: logical correlations at the pixel-level
● A set of CNN kernels has less weight than a fully connected neural network that spans the

entire image (weight sharing)
- Weight sharing: Have several small kernels and connect all these outputs of the kernels

to the neurons

43

11. CNNs

12. Forward and Backward pass
● Initialize the kernels randomly
● Forward pass: Convolve the image with the kernel
● Backward pass: update the kernel using gradients
● Initially randomly assigned numbers to kernel let the gradient descent update them

13. Zero Padding
● Adding zeros around the border of the image before convolution:

- Keep width and height consistent with the previous layer
- Keep the information around the border of the image

14. Stride
● Distance between two consecutive positions of the kernel:

- Allows us to control the output resolution
- e.g.: set the stride to 2 so the kernel skip two columns each time

15. Computing the output size

16. Convolutional Neural Networks (ConvNets or CNNs)
● Reason for introducing convolutional filters into neural networks:

- We don’t have to handcraft the features
● Locally connected layers: local features in small regions of the image
● Weight sharing: detect the same local features across the entire image
● Neural network learns the kernel values (or weights)

17. CNN on RGB
● If we have three color channels

44

18. Convolution on RGB input
● The depth of the kernel must match the depth of the image
● Element-wise multiplication: output will always has a depth of one

19. Detect multiple features
● Apply multiple kernels to the image in parallel at the same time, each kernel will give you a

specific feature.
● The depth of the output = # of kernels you applied at the same time
● example

- Pink values are weights learned by convolutional layer, everything else is input/output

20. Convolution on RGB input example

Pooling Operator (something that reduces resolution)
21. Consolidating information

● In a neural network with fully connected layers, we reduced the number of units before the final
output layer

- Because we want to consolidate information by compressing them (only remain the
main information). It is the function of pooling layers

- Consolidate information in a neural network with convolutional layers by:
~strided convolutions
~max pooling
~avergae pooling

22. Max pooling (High-pass filter)
● Pooling layers provide invariance to small translations of the input

45

● The kernel won’t have values within originally, they will just pick the max number within that
size.

23. Average pooling:
● Compute the average value as the selected value

24. Stride convolution:
● Shift the kernel by s (e.g. s = 2) when computing convolution

25. CNN Architecture Blueprint
● As we go deeper, the resolution or the heights and width are reduced:

- The kernel can capture a very small amount of information, if the height and width of the
image are reduced, the same kernel can capture more information at once, but the
resolution of the image will decrease since the size of the image is smaller.

● Why increase the # of kernels as going deeper:
- The kernel that is closer to the input tends to learn low-level features, because there is a

hierarchical nature to the information, we don’t have many low-level features.
Higher-level features are different combinations of low-level features, so many more
possibilities.

Pytorch implementation

46

Visualizing convolutional filters
26. CNN filters/feature maps look like

● The first layer is usually to do all the research that people usually to do manually
● Learning with different edges
● The output is the shadow of the image

27. CNNs learn what features
● Need to build features on top of features until you get to this high-level layer

CNNs in Pre-Deep Learning Era
28. LeNet

● The original CNN, first introduced by Yann LeCun in 1989
- Based on earlier “Neocognitron” (Fukushima, 1980)

● Several variants, mostly referred to LeNet-5 (above, 1998)
- 7 layers total: 2 convolutional, 2 subsampling (i.e. pooling), 3 fully-connected

● Different invariance:
- Translation invariance
- Scale invariance
- Rotation invariance
- Squeeze/stretch invariance
- Stroke width invariance
- Noise invariance

● Pytorch implementation
- Fully-connected layersc

47

- Convolutional layers

- pooling/subsampling layers

29. On the eve of deep learning
● Visual object classification
● Deformable Parts Models <- best resolutions to object classification

48

● CNNs are outperformed on most tasks by using hand-crafted computer vision features, and
other ML classifiers, e.g. random forests (decision trees) or SVM

30. Deformable Parts Models
● Recognize using parts and locations of parts
● Allow some deformation of part location
● Doesn’t work well for different viewing angles

Modern Architectures
31. ImageNet

32. AlexNet
● General

● Architecture

● Different from LeNet-5

49

● training

33. Data Augmentation
● Apply class-preserving transformations to the input

- Increases training data
- Helps generalization by learning the internal representation of transformations

● Used by AlexNet (and all other CNNs)
● Generally, different positions, colors, and directions of the same picture

34. Generalization and Depth
● Increased depth improved generalization on ILSVRC and other tasks, but training very deep

models often failed:
- Vanishing or exploding gradients: Gradients will get smaller and smaller if you get many

small numbers in these intermediate layers
● improvements:

- Improved initialization for ReLUs
- Normalization (e.g. Batch Normalization)
- Residual connections

50

35. New model to solve this problem

36. Inception block
● Use 1*1 layers to compute depth, so the consecutive convolutional kernel has less depth, so

smaller number of parameters to be optimized
● Uses a mixture of 3*3, 5*5 and 7*7 filters on one layer
● Don’t need large 7*7 to learn most important filters, use mostly 3*3, and add a few larger filters

37. Pointwise (1*1) convolution
● Control the depth of your network in different layers
● Pixel-wise linear transformations

- Originally used in “Network-in-Network” model
● Learn to map CNN feature maps into a lower or higher dimensional space

- Good for learning compact representations/compression
● Used in all modern CNN architectures, except VGG

38. Auxiliary Loss
● Address the gradient vanishing problem -> introduce intermediate loss function
● Inception network is pretty deep -> subject to the vanishing gradient problem
● Solution -> intermediate classifiers

- Adding classifiers in the intermediate layers such that the final loss is a combination of
the intermediate losses and the final loss

51

39. VGG (Visual Geometry Group, Oxford)

40. Residual Networks
● Uses skip connections to provide deeper layers more direct access to signals
● ResNet won ILSVRC 2015 with 3.57% error

- The model had 152 layers
- Better than human baseline

41. Skip Connections (residual Networks)

52

42. ResNets

Transfer Learning
43. Learning Visual Features

● Encoder is responsible for extracting important features of an input
● If we want it to fit our small dataset:

- Delete the original classifier, freeze the weights in encoding part (stop the gradient there,
no gradient going back, only updating weights of the two fully connected layers)

● Classifier steps: Map these features to the labels that you have for that past.
● Two distinct parts:

- Convolutional layers: Learn filters across spatial and channel dimensions
- Fully-connected layers: learn to classify images based on the learned visual features

● Embedding: a learned lower-dimensional set of “visual features” representing the image
- This embedding encodes everything needed from the image to classify objects

53

44. Transfer Learning using Embeddings
● By being trained on a large image classification dataset, CNNs learn something general about

representing images.
● We use these features to transfer our learning to a new problem:

- Train CNN 9e.g. AlexNet) on large image datasets (e.g. ImageNet)
- Remove “classification” layers at end of model, freeze remaining weights
- Add, and train, new layers at end of model suitable for our new task

45. Fine-tuning for transfer learning
● We froze the original model’s weights, used our CNN layers as a feature extractor
● Often training some/all of the original model’s weights on the new task at a lower learning rate

helps the features “adapt” to the new task
46. PyTorch implementation

54

Artificial Neural Networks
Neuron

1. General

Activation Function
2. Activation function

● God to develop our own activation function
- It needs to have lightweight derivatives -> computationally cheap
- Suggestion: use ReLU as the default activation function

3. Linear Activation Function
● Bias term: if we don’t have it, the decision boundary will always pass through the origin which is

kinda limited.
● The neural network automatically updates the bias term
● The bias is related to the offset of the line from the origin
● Problems

- Most real datasets are not linearly separable
● (y = wx + b) is a generalized line for any dimension, known as a hyperplane, splitting the

n-dimensional input space into 2
- Given you the decision boundary

4. Early Activation Functions: Perceptrons

5. Sigmoid Activation Function
● Saturated neurons “kill” the gradients

- Gradients become vanishingly small very quickly away from x = 0
- The functions get saturated (gradients = 0), we will not be able to use it, since we don’t

have any signal to train it

55

6. ReLU Activation Function
● Problem with original ReLU (Rectified Linear Unit) based activation functions:

- Lose half of the information on the negative side
● For Parametric ReLU and Leaky ReLU, the negative slope is being learned by your neural

network
● Can the negative slope be one?

- No. We can have any value except 1. Otherwise the function will be linear again.

Training Neural Networks

Loss Function
7. Loss function:

● computes how bad predictions are compared to the ground truth labels
● Large loss: the network’s prediction differs from the ground truth
● Sall loss: the network’s prediction matches the ground truth
● Calculate the error over all training samples (average error)

8. Softmax function:
● normalizes the logits into a categorical probability distribution over all possible classes
● Ground-truth label: Human-defined identification since we trust human’s classification

56

● One-hot encoding: Maps categories to vector representation
● Softmax function itself: the exponential of each of the inputs divided by the summation of the

exponential of all the inputs.

9. Mean Squared Error (MSE):
● mostly used for regression problems

10. Cross Entropy (CE):
● mostly used for classification problems

11. Binary cross entropy (BCE)

12. Forward-Pass with Error Calculations
● MSE

● BCE

57

Gradient Descent (An algorithm from optimization)
13. Neural Network Layer (Vector, Matrices, Tensors)

● Weight matrix: Each neuron’s weight vector is a row of the weight matrix W and the input id a
column vector x

- Y = f(Wx + b)
● How to change each of our neuron’s weights w(ji) to reduce this error E

- Know how much each weight is contributing to the loss or error -> dE/dw(ji)
- We want to find the error to increase and then change them in the opposite direction
- Relatively simple to calculate adjacent to the output layer

14. Neural Network Single-Layer Training
● Train the neural network: computing the gradient of loss with respective to each of the weights,

then changing that weight based on the value that we compute if the weight is causing higher
values of loss, we will move the opposite direction.

● Gradient: vector of partial derivatives for all weights
- Direction of the gradient is the direction in which the function increases most quickly
- Magnitude of the gradient is the rate of increase

● Learning rate: a fixed number to make sure we are not very aggressively changing the weights
● Adjusting weights according to the slope (gradient) will guide us the minimum (or maximum)

error
● Weight id contributing positively: reducing the loss we are going to move in the positive direction

of that.

15. Delta Rule for Single Weight/Training Sample

58

16. Forward-pass and backward-pass

Neural Network Architectures
17. XOR

● Needs two decision boundaries to solve
● Solution:

- Have at least one hidden neural network layer
- Limit of an infinitely wide neural network with at least one hidden layer, NN is a universal

function approximator
18. Backpropagation:

● Solving credit assignment problem
● A method that describes how to distribute errors to neurons not adjacent to the output layer
● Solution: Dynamic programing

19. Multiple Layers with Non-Linearity

20. Neural Network Architecture
● Feed-Forward Network: Information only flows forward from one layer to a later layer, from the

input to the output.
● Fully-Connected Network: Neurons between adjacent are fully connected
● Number of Layers: number of hidden layers + output layer (Input layer is not the layer here)

● An architecture of an NN describes the neurons and their connectivity.

59

Training Artificial Neural Networks
Hyperparameters

1. General
● Different hyperparameters:

- Batch size
- Number of layers
- Layer size
- Type of activation function
- Learning rate

● Weights are updated through gradient descent (Inner loop of optimization)
● Tune hyperparameters (Outer loop of optimization)

Optimizers
2. general

● Defining a loss function turns a learning problem into an optimization problem
● Optimizer:

- Determines, based on the value of the loss function, how each parameter (weight)
should change

- Solves the credit assignment problem: how do we assign credit to the parameters based
on how the network performs?

● PyTorch automates the gradient computation
3. Stochastic Gradient Descent (SGD)

● For each iteration evaluate a training sample from the dataset taken at random
● It allows you to do more of a global search for an optimum, results in a better set of weights for

your model
● Gradient descent on entire training data

4. Mini-Batch Gradient Descent
● Advantages of applying batching:
● Batch size: number of training examples used per optimization “step“

- Randomly select, Batch the data, train based on the batch
- Often set the batch size to your gpu memory (number of images)

● Iteration: One step
- The parameters are updated once per iteration
- A number of samples were processed before the model is updated

● Epoch: number of times all the train data is used once to update the parameters
5. Inefficient batch size

● Too small:
- Noisy
- Optimize a possibly very different function loss at each iteration

60

● Too large:
- Expensive: need to do parallel computation
- Average loss might not change very much as batch size grows
- The true gradient is not always the best gradient for optimization

i.e. some amount of noise in your gradients can help training (converge faster), larger
batch size is not always better

6. Gradient descent: N-Dimensional
● Plateaus are a problem but can be addressed using specialized variants on gradient descent
● Most points of zero gradients are saddle points

- Saddle points: The gradients are zero in one direction, non-zero in the other directions.
7. SGD with Momentum

● Ravines: areas where the surface curves much more steeply in one dimension than in another,
common around local optima.

● Problem:
- Navigating ravines: It oscillates across the slopes of the ravine

● Why momentum:
- Helps accelerate SGD in the relevant direction\
- Dampens oscillations

● Characteristics:
- The momentum term increases for dimensions whose gradients point in the same

directions
- Reduces updates for dimensions whose gradients change directions
- Analogy: We push a ball down the hill, ball becomes faster and faster until it reaches the

terminal velocity

8. Adaptive Moment Estimation (Adam)
● Adaptive learning rates: Each weight has its own rate

● Incorporates momentum and adaptive learning rate:
- Rapid convergence requires minimal tuning
- Commonly used optimizer

61

Learning Rate
9. Learning rate:

● determines the size of the step that an optimizer takes during each iteration

● Larger step size: Make a bigger change in the parameters (weights) in each iteration
● Use small value:

- Very small parameter change
- Longer training time

● Use bigger value:
- Noisy
- Detrimental to training

● Appropriate Learning Rate depends on:
- The learning problem itself
- The optimizer
- The batch size:

Large batch -> larger learning rates
Small batch -> smaller learning rate

- The stage of training:
Reduce as training progresses

Normalization
10. Reason for normalization

● Prevent the model from paying attention to the features with larger range
● Normalize one layer:

11. Batch Normalization
● Inference time

- Keep a moving average during training and use it at inference time

● Normalize activations batch-wise for each layer

62

● Advantages:
- Higher learning rate -> speed up the training
- Regularize the model
- Less sensitivity to initialization

● Disadvantages:
- Depends on batch size: no effect with small batches
- Cannot work with SGD <- only works with batch 1

12. Layer Normalization
● Applied on the neuron for a single instance across all features
● Advantages:

- Simpler to implement, no moving averages or parameters
- Not dependent on batch size

Regularization
13. Regularization:

● a set of techniques that you make the training task more difficult for the model.
14. Dropout:

● forces a neural network to learn more robust features
● During training: randomly drop activations (set to zero) with probability (p)
● During inference: multiply weights by (1 - p) to keep the same distribution (as training)

15. Weight decay

● Reason for decay:
- Lowering variance: Prevents the weight from growing too much
- Keep the model from overfitting

● Characteristics:
- Weight reduction is multiplicative and proportion to the scale of W

16. Early Stopping with Patience
● steps

- In each training iteration observe the validation loss
- As soon as validation loss starts to increase, start a counter
- If the validation loss decreases, reset the counter

63

- Otherwise, wait for fixed iterations (patience) and then stop the training

PyTorch Implementation
17. MNIST Dataset

18. ANN
● ANN setup

- Import all the necessary modules

● ANN Architecture

64

19. Loss Function and Final Activation for ANN

20. PyTorch load data example

21. Forward and Backward Pass
● Forward pass: Make a prediction

- e.g. model(input), which calls network.forward method
- Information flows forward from input to output layer

● Backward pass: computes gradients for making changes to weights
- e.g. loss.backward()
- Information flows backward from output to input layer

● Pytorch implementation
- Training code for binary classification problem

22. PyTorch: Training and Validation Error
● Assessing model performance by tracking error rate and accuracy

23. Multi-Class Classification
● Requires one-hot encoding at first
● Requires minor changes to our PyTorch implementation:

- The final output layers has as many neurons as classes
- Apply the softmax activation function on the final layer to obtain class probabilities

65

- Use the multiclass cross-entropy loss function
● ANN Architecture multi-class

- Input size still 28*28, output size cannot be a single neuron

24. LossFunction and Softmax Activation

25. Output Probabilities

Evaluating and Debugging
26. Confusion matrix

● What your prediction is with respect to all possibilities

27. MNIST 2D Visualization

66

28. Debugging NN

67

Introduction to Artificial Intelligence
1. AI

● Reason for developing: reproduce human intelligence with machines
● Captures the notion of developing computer systems that can perform tasks normally only

human could
● Statistics -> ML -> AI
● Symbolic Approach:

- Dominated the early days of AI
- Like the knowledge of an adult
- Construct well-defined discrete symbols
- Too abstract to generalize to real-world
- Input: data and program, output: result

● Connectionist Approach
- Dominated AI since2012
- Simulate how a baby learns
- Input: data and result, output: program
- Requires large-scale data and compute

● Fields of Deep Learning
- ML
- Computer vision
- NLP

2. Machine Learning
● Formal Definition (Mitchell et al. 1997):

- Learn from experience (E) with respect to some class of tasks (T) and performance measure (P)
- Performance at tasks in (T), as measured by (P), improves with experience (E)

● It enables computers to learn from data, avoid tons of hard coding
● Reason for need:

- Human-generated results will not encounter some counter-example, difficult-to-formulate
rules that cover all the conditions

- We need high-dimensional input space, hard to understand, and must first learn easier
representations

3. Deep Learning
● Latest version of ANN, or connectionism an old ML method
● Formal definition (LeCun et al. 2015):

- A subset of ML
- Allows multiple levels of representation, obtained by composing simple but non-linear

modules that each transform the representation at one level (starting with the raw input),
into a representation at a higher, slightly more abstract level.

4. History of Deep Learning

68

5. Terminology Summary

6. Deep Learning applications
● Machine Translation
● Drug Discovery
● Speech Recognition
● Image Generation
● Alpha Fold
● AlphaGo
● Mathematics
● Code Generation
● Language Modelling
● Simulators

7. Deep Learning Caveats
● Interpretability
● Adversarial examples
● Causality

- Causality: Relationship between cause and effect (A导致B)
- Correlation: Association between two variables (A和B有关联，但A不是导致B的原因）

● Fairness & Bias
8. Bias

● Problems in the collection of training data:
- A binary classification problem where most of the data comes from one class
- Data not representing the population

9. Machine Learning Basis
● Supervised Learning

- Regression (real-valued or continuous value) or Classification (categorical or 1 of N)
- Requires data with ground-truth labels/outputs

● Unsupervised Learning
- Self-supervised learning, Semi-supervised learning
- Requires observations without human annotations

● Reinforcement Learning
- Sparse rewards from the environment
- Actions affect the environment (dynamic nature)

10. Supervised Learning

69

11. Inductive bias (learning bias):
● the set of assumptions that used for modeling.

12. Mean Squared Error (MSE):
● measures how close a regression line is to a set of data points

13. Error and loss
● Need a way to quantify model performance

- Minimum error from our fit
● Optimize a metric

- Proxy called a loss
14. Bias versus Variance Tradeoff

● Greater model complexity higher variance and chance of over-fitting
- Over-fitting过拟合: occurs when a statistical model fits exactly against its training data.

● Lower model complexity leads to higher bias and under-fitting
- Under-fitting欠拟合: A data model is unable to capture the relationship between the

input and output variables accurately, generating a high error rate on both set and
unseen data.

15. Training and Testing Data
● Mode data -> better model
● If testing data is the same as training data -> over-fitting

16. Validation and Holdout Data
● Split data into train, val, test
● Train on training, tun hyper-parameters on validation, evaluate sparingly on test set (holdout

data)
- Tune: the process of tuning the parameters present as the tuples while we build ML

models.

70

