APS 360: Introduction to Artificial Intelligence
Lynne Liu | klin.liu@mail.utoronto.ca | APS360 Final Review Package

The notes are in backward order; the latest is the first.

JLILC: 153 0T 1 12 1= 8
(7= =T | PP PPSSPRSPPPP 8
IR 18T (G (=T o o J PP 8

F LY a1 (o] Y =T o3 o F= T o 1= o 8
P N1 (=1 [0 g I 1Y/ (=T a =T g1 L] o R 8

I =103 {0 T 10 0= = SRS 8
T I = = o4 0 =Y (SRR 8

4. Attention iN tranSOMMIEIS. et e e e e e e e s et e e e e e e neeeeeeeeeeaan 9

T Y UL T=T= Lo = 1= T o T 9

O = 1) (o] a1 =Y Tt Yo [T SO PRERRR 9

[e E= T[] g T= 1 =1 g TeTeTo |1 T PP PTOOPPPUPPPPRRN 9

8. Pytorch implementation.......... ..o 10
Transformers for Language MOAElING.........coooii oo 10
LS T = T U =T 1= 1Y [Yo L1 1 Vo SRR 10

10. BERT (Bidirectional Encoder Representations from Transformers)..........ccccccoeviiiiiieeeee i 10

11, INPUE EMDEATINGS. ..ottt e e e e e e e s r e e e e e e e e e e e e e e e e e e 10

12. Task 1: Masked WOrd PrediCtion........... ... e ittt e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaens 10

13. Task 2: Next Sentence PrediCtion........ ... 11

L N =y (=T g I CT= T4 o1 Vo PP 11
Transformers for COMPULET VISION........coiii it e e e e et e e e e e e e s e e e e e e e e e nnnneeeaaeeens 11
15. VIT (ViSION TranSTOMMEIS).....ceei ittt ettt e e e e e e e e e e e e e e e e e e e aannes 11
Graphical Neural Networks (GNN).......ooiiiiiriii s annns 12
PR 1V 0 (17Z= €[] o PR 12
DD S S . it —————————————————————————ttt et e e ettt e et e et taaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 12
P2 = T 12

T I 1o =Y o S 1= £ 12

€ =T o] o 1= 12
4. Transformers without positional ENCOAING.........uuiiiiiiiiiiiiieiieeeeeeeeee e 12

5. GrapnS iN ENEIAL.........uiiiii e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeaeeeeeeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaeas 12
€ RSP 12
6. Predict linNKS betWEEN NOAES.ooiiiiieeeeeeeeeeee e 13

7. MESSAGE-PASSING......eeiiiiiiiitieee ettt et e e e e e s et ettt e e e e e a b et e et e e e e e e b a e e e e e e e e e e nnreeteeeeeeaaan 13

8. Read-out (graph pooling) FUNCHON.............uuiiiiiiiiiiiiiie e e e e e e e e e e e e e e e aaaaaaaaeas 14

9. GNIN MOGEIS. ... ettt e e e e e ettt e e e e e e e ettt eeeee e e s saeeeeeeaeeesannsseeeeaeeeeaannssseneeaeeeaanns 14

10. Graphical convolutional NEIWOrKS (GCNS)........ceiiiiiiiiiiiiii e 14

11. Deeper With GNINS.......ooi e 14

12. Graph Atention NEetWOIKS (GAT). .. ettt e e e e e e e e e e s e e e e e e e e aanes 15
Y0] ot T 1]] =Y g =T) = 11T o S 15
13. Dense IMPIemMENTAtioN..........cooiiii e e 15

14. Sparse IMplementation. e e e e e eeeeeeeees 15

15. Dataloader & Dataset.........cooooiiiiiiiii oottt ittt ateeeeneeeeeeees 16
Generative Adversarial Networks...........cooiiiiiiiiiiicisrscrssssscssssssssssss s s s s m s mm s nmmnnmmmnmmnnnmnnnnnnnnns 18
@1 LT =AY 1V o T oY £ 18
1. Identify diffErenNt MOAEIS...........uuiiiiiiiiiiiiie et e e e e e e e e e 18

2. GENEIAtIVE |@AIMING. ... ettt e e e e oot et e e e et e s et e et e e e e e e e ann e r e e e e e e e e annnees 18

mailto:klin.liu@mail.utoronto.ca

I 1Yo (=T =AY/ 1 0 [0 Te (=) £ TSR 18

4. Problem with @UIOENCOAEIS.cooiiii ottt e st e e e e e eeeeeeeeees 18
Generative Adversarial NetWOIKS..........ooo i 18
5. Generative Adversarial NEIWOIKS............uuuiiiiiiiiiiiiiiiieeieeeeeeeeee e a e e e e e e e e e e e e e aaaaaaaaaaaeens 18

B. GAN IMOUEL. ... ettt e et e e e e e e e e e e e e e e eeeeeeeeeeeeaeeeeeaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaes 18

7. Pytorch implementation. oo e e e e e e rnaann 19
Problems Of TraiNiNg GANS.......ooi ittt e e e e e s st e e e e e e s e e teeeeeeeesaannnsseeeeeeeeaannnsneeeaens 20
8. VaniSNING Gradi@ntS..........ceeiiiiiiiiiii ettt e e e e et e e e e e e e e e e e e e e e e 20

18 T, o To L= @7 0] 1 =T o 1= PP 20

O = 1 T o TR (o @] 01V =T o[RS 20
APPHCAtIONS OF GANS ..o 20
€T =)V Tor= 1 L= (o TN O o] o RSSO 20

(P2 o] g o 11 Te] b= 1 I CT=T o =T = 1o] o TR 20

13, SHYIE TrANSTON ...ttt e e e e e ettt e e e e e s e e e e e e e e e e e e es 20
AQVEISAIIAl ALACKS. ... eeeeeee ettt e e e e e ettt e e e e e e e s na ettt e e e e e e e e e nnneereeeee e e e nnneeeeeeeeeaaanns 20
14, AQVErSarial AtACKS.u ettt e 21

15. Targeted/Non-targeted AHACK........ ..o e e e e e e 21

16. White-Box/Black-BOX AHACKS.ccoiiiiiiiii ittt e e eeeeeeeeeeeeeeeees 21

L Y o] o] o= 1 1 (o T o =30 21

18. Defense Against Adversarial AttacK.........oooovviiiiiii . 21
Recurrent Neural NetWOTK....... ... e e e r e e r e e e e e e e e n e e e e n e 22
/03 (Y= 1o o PP 22
R U (o 7= T o T =Y =3 22

o used to learn an embedding SPACE.uiiiiii i e e e e 22

2. NUMEIICAl FEATUIES. ... e e ettt bttt ettt e ee st e e e eeeeeeeeees 22

3. ONE-NOL ENCOAING..... . e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeaeeeeeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 22
LT o (o I =g] 7= o 11 o 1= 3SR 22
O =Y =T (= 4 TR 22

B, TEXE @S SEQUENCE. ... ittt et e e e e e e e e e e eeeeeeeeeeeeeeeeeetae et eeeaaaeaeaaaaaaaaaaaaaaaaaaaaaaaes 22
LYo o 1A o PSSRSO 22

7. SKIP-Gram IMOAEL........cooiiiiiiii it b aat b bt b aasbassasssssssssssssnssessenssneseeneeees 23

8. CBOW (Continuous Bag of Words) MOGEL............coouiiiiiiiiiiii e 23

O. CBOW VErSUS SKiP-Gram. .. i iiiiiiiiiiieiei ittt s et e e s s st s sss s et s s e e s eesseeeeeeeeeeeeees 23

10. GloVe: Utilizes the global StatiStiCS.cuiiiiiiiiiie e 24

11. PyTorch GIoVE EMBDEAAINGS........uuuuuuiiiiiiiiiiiiiiiiiiiiiiie it e aaaaaaaaaaaaaaaaaaaaaas 24

[Ey 2= Lot 1V (= LT U = R 24
12. Measure of distance in the embedding SPACE............uuiiiiiiiiiii e 24

13, WOIA ANGIOGIES. ...ttt ettt e e e oottt e e e e e ettt e e e e e e e bbb e e e e e e e e e e annrene s 24

14. Bias in WOord EmMbDeddiNgs........oueuieiiiiiiiiiie ettt e e st e e e e e e e e e e e 24
=Y o 10 F= To L= Y, o o 1= P 24
ST =T g o TN = Vo T 1Y, o T 1= 111 oo TR 24

16. WOIKING WItN TEXE. ...t e e e e e s e e e e e e e aabn e e e e e e e e aanes 25

17, SENHMENT ANGIYSIS. ...ttt e e e et e e e e e e et e e e e e e e e e neeeeeens 25

S TR 11 = £ o 1= PP 25
Recurrent Neural NetWOrks (RNINS)........uuiiiiiiieeiiieeeee e 26
S TR TR 26
20. RNN LYETS. ..ttt ettt e e e+ 4ot ettt oo e e e bbbt e et e e e e e et e e e e e e e e e s nnnnnneeeeeas 26
271, PyTorch Implementation......... ..ottt e e e r e e e e e e 26

22. Sequential Learning..........cooiiiiiiiii oot ————————————————————tb—ar—rrtraarrraaaanaaes 27

23. Different RNN MOGEIS.ouiiiiiieeiiiee ettt e e e e et e e e e e e e e e e e e e e eannnraeeeeeeeeanns 27
24. Different types of prediClioN............ e 28
Limitations Of Vanilla RININS...........uuiuiiiiiiiiii et e e e e e et e e et e e et e e e e aaaaaaaaaaaaaaeaaaeeaeaaaaeaeaaeeaeaaaaaens 28
2. PrODIEM. .. —— 28
26. Exploding/vanishing gradients. ... ——— 28
LSTIMS & GRUS.....eeiiiiiieeeeeeeee ettt e e oo e ettt e e e e e e e e et eeeeeaeassbeeeeeeeee e e sssseeeeeeeeeeannsseneeeeeeaannnssnneeaenn 28
27. Gating MECRANISIM........eieiiii et e e e e e e e e e e r e e e e e e e nneees 29
28. Long Short-Term Memory (LSTIM)......coi oottt e e e e e e e e e e e e e e aanes 29
29. Different gates fOr LSTIM......oo ittt e e e e et e e e e e e e e e e e e e e ennneeees 29
30. Gated Recurrent Unit (GRU).........oooiiiiiiiii et e b e s e ee s s ssssesseesseeeenes 30
31. LSTM/GRU VErsuUS RNIN........oiiiiiiiiiiiiiiiiie ettt e e e st e e e e e e s e e e e e e s esssseeeeeeeeeaaannnneeeaaens 30
32. PyTorch implementation..............ueiiii et 30
Deep & BidireCtional RNINS.cooi ittt e e st s esssessseeeeeeeeeeeeeeeees 31
33. BidireCtional RININS..... ...t e e e e e e st e e e e e e e st e e e e e e e e sannteeneeeeeeeannnes 31
G I3 1= =T o BN o I £ RSP 31
35. PYTOrch implementations. e e 31
Sequence-to-SeqUENCE MOUEIS.ooii ittt et e e e e e e e e e e e e e eeeeeeeeeees 32
36. RNIN MOGEI TYPES. .ttt ettt e e e e e ettt e e e e e e e s bbbt et e e e e e e s aabbbeneeaeeeeaannes 32
37. Hidden State DifferEenCesS.eiiiiieei e e a e 32
38. Sequence-to-Sequence RNINS. ... 32
39, DUIING Tr8INING . ¢ttt et e e e e e e e e e e e e e e bbb e e e e e e e e e e e nn e e et e e e e e e annnnreeeeas 33
O B = T=Tod o= g (o] (ot o o TSP EPUP T OPPPPPI 33
I TN g o [(=T (=T o= R 33
2y YA Lo T el o I o]] [T 0 =T o1 7= 11 o] o 34
UNSUPerviSed LearNinNg.......ccu. . ciiiiiiiiiicceiciss s s rs s snmsssssss s s s s s s e s smmass s ss s s s e e s nmmssssssssssssmnnnnmsssssssssenmennnmnnsnssnnssnnnns 35
Y/ 0} (Y= o] o PP 35
1. Challenges with Supervised Learning..........ooouuuiiiiiiiiiiiiee e e e 35

2. FEature ClUSTEIING:.coii ittt e ettt e e e e e ettt e e e e e e e nb et et e e e e e e e anneteeeeeeeeaanns 35

e Learn the underlying patterns, then need a few examples justto [abel............ccuvvvviiiiiiiiiiiiieiiiiieenee, 35

B T D = 1 0T g TSR 35

0 01T T o 1= =SSR 35
1Y a1 = 1T o o] 4 g F=1 1T o T 35

B APPIICALIONS. ... ———————————————— b ————————————————————————— 35

6. PyTorch implementations........ oo e e e e e e e e e e e e e e e e eennae 36

S =Tt o I U 0 =T To Yo 1= = SO SERRP 36

8. DEN0ISING AULOENCOUETS.eeeeeeeieiite ettt e e e e et e e e e e e e e e e e e e e eanbbeneeeeeeeaanne 36

9. Generating New Images With INterpolation...............uueiiiiii i 36
Variational AULOENCOAEIS (VAE).e ittt e e e e e e et e e e e e e e e nnbeeeeeeeeeaans 37
L0 IR O F= =T =T 15 o SRR 37

11. Different types aUtOBNCOAETS...........oooiiiii et 38

(070 a N Vo] (8] 1 o] o F=1 = 18] {0 =T o Too Yo LY oo 38
(P2 OTe]0)Y/o] [V ilo] g F= 1= 0] (o)=Y o [oto Lo =1 AR 38

13. TransSpOSEd CONVOIULION.ueiiiiiii it e e e e e e e e e e e e e e nnnneeeeaeeeas 38

3 =T [11 T RSO 38

TS 4T [SRRSO 38

16. PYTorch implementations.o e e e e e e 38
Pre-training With AUTOENCOTETS. it e et e e e e e e e e e e e e e 40

S = = 111 T 40

Self-SUPEIVISEA LEAIMING.ottt e bbbt e ba s s baasseessessssesseessesseeeseeeeeeeeees 40
18. Self-supervised learning with pretext tasks. ... 40
LS TR (e 1) =Y PRSPPI 40
20. CoNrastive LeaIMING.ttt e e e e e e st e e e e e e e s e s ne e e e e e e e e e anntreeeeeaeeeaann 40
122 TS 10 O S 41
Convolutional Neural NetWOrK...........ciimimiiinisssesss s ssssssrs s ssssss s s s s s s s ssssssss s s s sssssssssnnssssssssssssnnnes 42
/0T (Y= o] o PP 42
1. INAUCHIVE FEASONING:.....eeiiiiiiiiiiite ettt e e e e et e e e e e e ettt e e e e e e e bbbt e e e e e e e e s annbnneeeeaeeas 42

e Start with an observation, leads to a possible generalization hypothesis. Valid observation may lead
to different hypotheses, some of them can be false.................ueviiiiiiiiiiiiiie e, 42
P20 1 o [U o3 1LY = o - T PP 42
3. Downsides for using a large fully connected NEIWOIK...............uvvviiiiiiiiiiiiiiiieieee e 42
(07010 \V o] 011 To] g M @] 1=T ¢=1 (o] SRR 42
S o Yo] U1 o PSSP 42
5. ConVOIULioN iN 2D fOF IM@GES.....iii ittt e e et e e e e e e et e e e e e e e e e aaaes 42
Convolutional Neural NEtWOTKS.cooii it s e s s e e e se e s e eeseeeeeeeeeeeeeeeeeeeeeees 43
6. Biological INFIUBNCE. ...t e b b s st s ss b s sssssssesssesssesenneeees 43
48 = (= o 4 T RSP 43
e The output (activation) is high if the feature is present.............ccoviiiiii s 43
LG T = (1 = OSSPSR 43
e something in the image, like an edge, blob, or shape............. s 43
9. Convolutions With learned KErNEIS:..........coo e e e e ee e e e e e e e 43
e share the same parameters across different locations (assuming input is stationary)....................... 43
(RO o =T = T (= 4] TR 43
O 1 PSSP ERRRRP 43
12. Forward and BaCKWaId PaSS.uuueeiiiiiiiiiiiiiiee ettt e e ettt e e e e e et e e e e e e e e e e e e e e e s nnnneeeeeens 44
LS TR =Y o T8 =T Lo 1 T 44
TS T [P ERRT 44
15. Computing the OUIPUL SIZE......eeiiiiiiiieie e e e e e e e e 44
16. Convolutional Neural Networks (ConvVNets or CNINS)........cooiiiiiiiiiii e 44
T7. CNN ON RGB..... .ottt e e e e e e et e e e e e e e e e et aseeeeeeeeeansssseeeeaeeesanssneeeaaens 44
18. Convolution 0N RGB INPUL........oooiiiii bbb e e e b baesbsessssssssssesseeeseeeeees 44
19. DeteCt MUILIPIE FEATUMES.......uuiiiiiiiiiiee e 45
20. Convolution 0N RGB iNPUL @XAMPIE.........uuuiiiiiiiiiiiiei ettt ettt e e e e e e e e e e e e e e aaaaaaaaaaeaeeaaeens 45
Pooling Operator (something that reduces reSOIUtION)...........cooiiiiiiiiiiii e 45
21. Consolidating INfOrMAtION............uuiiiiiiii e aaaaaaaaaaaaaaaeas 45
22. Max pooling (HIigh-pass filter)...........ooo s 45
PZAC T ANY/= T = To =N o o o] 1o Vo PP 46
e Compute the average value as the selected value..............cccooiiiiiiiii 46
24, SHAE CONVOIULION: ittt e e e e e e e e e e e e e e e e eeeeeeeeeeteeeeeeeaaaaaeaaaaaaaaaaaaaaaaaaaaeeees 46
e Shift the kernel by s (e.g. s = 2) when computing convolution.................eveiiiiiieiiiiiiieeeieeeeeeeeeeeee e, 46
25. CNN ArchiteCture BIUEPIINT.......eviiiiiiiiiiieeeeeeeeeeeee e, 46
Pytorch implementation........... e 46
Visualizing convolutional filters...........coccin e ———————————— 47
26. CNN filters/feature maps 100K [KE..........cooiiiiiiiiii oot eeeeeeeeees 47
27. CNNS [earn What fEatUres.........ooo i e e e e e e e e e e aannes 47
CNNs in Pre-Deep LearninNg Era.........ccoooiiiiiiiiii oottt s e s s b e e s s s s s e e e e e e e e eeeeeeeeeeeeeeeees 47

28 LENEL. ... e 47

29. Onthe eve of deep [€arNING........coooi i 48

30. Deformable Parts MOEIS.............. ittt ettt et e et e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaeens 49
MOAErn ArCHITECIUIES.coiieiieeeeeee e 49
1 0 T 4 F= o = AL PP SPRR 49
B2, ALBXINET. ...ttt e e e e e e e e e e e e e e e ——eeaee e e e e nnaeneaaeeeeaaannnrereeaeeeaans 49
33. Data AUgMENTAtioN......cooi i 50

34. Generalization and DepPth........oooooiiiiii e 50
35. New model to SOIVEe this ProbIEmM...... ..o eeseeeeeeeeeeeeees 51

K LG [g To =T o] 110 I] Yo PP 51
37. Pointwise (1%1) CONVOIULION..........oooi i e b e b e s b s rsssasssssseeseees 51
BTG T T D11 =T 2 10 1= 51

39. VGG (Visual Geometry Group, OXFOId)..........eeeeiiiiiiiiiieiiee e 52
40. ReSIAUAI NEIWOIKS.cciii ittt e e s s s e et snsssssseessensneneeees 52
41. Skip Connections (residual NetWOrksS).........ccoooiiiiiiiiiiiii e eeeeeeees 52
2 =T] = T 52
L2115 =T == T o PSSR OSRSRRR 53
43. Learning VisSUal FEATUIES...........uuiiiiiiiiiie et e e e e 53
44. Transfer Learning using EMDeddiNgS.coooi i 54
45. Fine-tuning for transfer I8arniNg.............uuuiiiiiiiiiiiiiieeeeeeeeeeeeee 54
46. PyTorch implementation........ ... e e e e e et e e e e e e e e e ee e aaaeees 54
Artificial Neural NetWOTIKS....... . mn e e e e e s s mmnn e e e e e s e s nnmmnnnn e s 55
I T TU] o o R 55
(T T = U 55
ACHVALION FUNCHON. ...ttt ettt ettt et e et e e e et e e e e e e e e e e e e e e e e aeaaaaeaaaaaaaaaaaeeaaaaaaaaaaaans 55
P &3 A= 110 I {1 o3 1 o TSSO PPRERR 55

3. Linear Activation FUNCHON.o ettt et e s eeeeeeeeees 55

4. Early Activation FUNCLIONS: PerCeptrONS.ooeiiiiiiiiee e 55

5. Sigmoid Activation FUNCLION............eoi e 55

6. RELU ACHVAtION FUNCHON.uiiiiiiiiiiiiii ettt ettt ettt e et e e e e e e e e e e e e e e aaaeaaaaaaaaaaaaaens 55
Training NEUral NEIWOIKS........ooiiiiiii e e et e e e e e e e e e e et e e e eeeeeeeeeessnna e aeeeaaeennnes 56
0TS 38 U e 1T o PR 56
A0 o 1= 38 (T T 1 [o TR 56

e computes how bad predictions are compared to the ground truth labels...........ccccccooviii . 56
S TS T i (4 F= D {1 o2 1] USRS 56

e normalizes the logits into a categorical probability distribution over all possible classes............ccccuuuune... 56
9. Mean Squared Error (MSE):......ooo ittt e e e e e e e e e e e e 57

o Mostly used for regression ProbIEMS............ui i 57

L O o TSR 1 0] o) VA (0 = PRSPPI 57

e mostly used for classification ProblEMS..............uuiiiiiiiiiiiie e 57

11. Binary cross entropy (BCE).......cooo o 57

12. Forward-Pass with Error Calculations.............oooiiiii e 57
Gradient Descent (An algorithm from optimizZation).............oou i e 58
13. Neural Network Layer (Vector, MatriCes, TENSOIS)..........uuuiiiieiiiiiiiiiiieeee et 58

14. Neural Network Single-Layer Training.........ccccccuuuuuuriuiiiiiiiiieiieeiirsreereereeeereeeeeee e errererreesseeseees 58

15. Delta Rule for Single Weight/Training Sample..............uuuiiiiiiiiiiiiiiiiiiiiiiiiirieeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeees 58

16. Forward-pass and DaCKWarTd-Pass.ccccouuuuiueiiiiiiiieiiees 59
Neural NetWOrK ArChITECIUIES. ettt ettt e et e e e et e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaens 59

LRSI 7= o [o] fo] o 2= To T= 11 o o SO 59

e Solving credit assigNMENT ProODIEM.... ... i e e e e e e e 59
19. Multiple Layers With NON-LIN@AIItY..........ooiiiiiiiiiii e 59
20. Neural Network ArChiteCIUIE.cooi i e e e e s e e s sesseeeseeseeeeeees 59
Training Artificial Neural NetWOIKS...........ccoiiiiiiiiiicii st s s s nnen 60
[1Y 0T 0= 1= 1 =T =T = R 60
LR CT=T o 1= - | PP POP PP RN UUPPUPRPIRt 60

L0 011 1= =T 60
P2 o 1T 1= | PRSP 60

3. Stochastic Gradient Descent (SGD).........ooo o ————— 60

4. Mini-Batch Gradient DESCENL..........uuiiiiiei it e e e e et e e e e e e e s eeeeeeeeennnneees 60

5. INEffiCiENt DACN SIZE.... ..t a e 60

6. Gradient descent: N-DimenSiONal........cccciiiiiiiiiiiii et e e e s e eseeeseeeeeeeeees 61

7. SGD With MOMENTUM.......eee ettt e e e e e et e e e e e e s s na e eeeeaeeeeeannseeeeeeeeeeannnes 61

8. Adaptive Moment Estimation (AAm)............uuiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt 61
ST g T gL T = (R 62
S B == 1y o1 To N = | (= PRSP PPPPPPPPPPN 62

e determines the size of the step that an optimizer takes during each iteration..................................l. 62
I\ o7 g F= 11 2= o] o PR 62
10. Reason for NOrM@liZatiON..............eiiiiieee et e e e e e e e e e e e e e e e e e e nnnnees 62

11. BatCh NOrMaliZatioN.......... i e et e e e e e e e e e e e et e e eeeaeeeensenns 62

12, Layer NOIMMAIZAtION.eeeiiiiiie ettt e e e e e et e e e e e e e e e e e e e e e annnees 63
[C=To U] F=T = o] o PP PRPP P 63
13, REQUIAIZALION: ... b ————————————— 63

e a set of techniques that you make the training task more difficult for the model................................ 63

{3 o oY T | TR 63

e forces a neural network to learn more robust features................uveiiiiiiiiiiiiiiiii e 63

LRSI A LT T |1 e [=Tor= PSP PPPRRPR 63

16. Early Stopping With Pati@NCe..........uuviiiiiiieeeeeeeeeeeeee e, 63
YA Lol el a1 9] 0] (=T 0 4 1=T o] =1 i o TPt 64
7. MNIST DAtasel......coooiiiiiii e e e e e e e e e e ettt e e e e e e e eeees st e eeeeaeeeenessaaannns 64

= TR A OSSP 64

19. Loss Function and Final Activation for ANN.........ccoo e eeeees 65

20. PyTorch load data €XampPle............ oot e 65
21. Forward and BackWard Pass...........cooiiiiiiiiiiiii ettt e e e e eeeeeeeeeas 65
22. PyTorch: Training and Validation Error..............eeiiiiiii e 65
23. Multi-Class ClassifiCation. ...ttt e e e e eeeeeeeeeeeees 65
24. LossFunction and Softmax ACtiVation...........coeeeiiiiiiiiiiiii e, 66
25. OULPUL Probabilities..........cooo i — b ——b—a—ra——a—aa——s 66
[=AVZ=11UE=1x g Yo J=T o I D= o]0 T [| o TR 66
26. CONFUSION MATIIX. .eeiiiiiiiiii e et e e e e e e e e e e ettt bt e e e eeeeeeeeaebaa e eeeeeeeeasssannnnnes 66
27. MINIST 2D ViIiSUBHIZALION.......e ettt e e e e e e e e e e ee b e e e eeaeeeeeseaas 66

P2 T 1= o 0T T 11 T T 1N SRR POPRPPP 67
Introduction to Artificial Intelligence..........cooooiiiii i 68
R PR 68

A =Tt a1 L= == g 1] o o TSP PPR T OPPPPP 68

B B 1= T=T o B I =T g o T PP PPPRPOPUPURPPPR 68

4. History Of DEEP LEAIMMING......uuuiiiiiiiiiiiieiiieiiee ettt eaeeeas 68

5. Terminology SUMMAIY.......o.ooiiiiiii e 69
6. Deep Learning appliCatiONS....... ... e ittt e e et e et e et e e et e e e e e et e e e e aaaaaaaaaaaaaaaaaans 69
7. Deep Learning CaVEatS.cuuui ittt e e e e e e e e e e aae 69
G TR =TT 1= P 69
9. Machine Learning BasiS.........cocouuuiiiiii et e e e e e 69
10. SUPEIVISEA LEAIMING.eiiiiiiee ettt e et e e e e e e ettt e e e e e e eaanseeeeeeeeeaaannnnneeeeaaeeeennnnnens 69
11. Inductive bias (1earning Dias):........oooo s 70
e the set of assumptions that used for Modeling............ccooi i 70
12. Mean SQUAred ErrOr (MSE):......coo ittt e e e e e et e e e e e e e s eereeeeeeeaannes 70
e measures how close a regression line is to a set of data points...........cccccooooL 70
RS TR =1 o = T o [1= 70
14. Bias versus Variance Tradeoff..... ... 70
15. Training and TeStING Data..........coouiiiiii e e e 70
16. Validation and HOldOUL Data.............ooiuiiiiiiiie e e e e eeeeeeeas 70

Transformers
General
1. Quick Recap
e RNNs: model sequences -> cannot be paralleled -> inefficient
e Vanilla RNNs: cannot catch long dependencies since exploding/vanishing gradients
e LSTMs/GRUs: more preferred

Attention Mechanism
2. Attention Mechanism
e Components
- Attention score: importance level of each ‘word’
- Aggregate the data based on this score
e Example: Classifying tweets based on attention
- FC layer: taken in embeddings -> single score for each embedding
- Normalize the scores: softmax
- Weighted summation: result = sum(embedding * score)
- Trained end-to-end with classifier
e Attention in RNNs
- RNN without Attention: Taken the last hidden state as the representation of the whole
input sentence.
- RNN with attention: input -> embedding -> got the hidden state from each direction
(Bi-direction encoder) -> attention score -> compress together -> decoder -> output

Ye-1 Ye
W= Pl e X) = glpen mn)

Decoder & = faaimial
— %
wen

ane Ty
6= Zauh,-
Context Az 7
R T exple;)
4 R e
03 e L g T

‘)—‘Tl_lexl-‘ft’tk)

Lk

e Attention Taxonomy
- cross-attention: capture relationship between two sequences (e.g.: translate two
languages).
- self-attention: for a given token of the input, compute attention weight for all other tokens
in the sequence.
e Compute attention score
Suppose we have two embeddings a, b elR”

We can use different methods to compute attention score between them:

e Dot product score{a,b)=a".b
e (Cosine similarity score(a,b)=a’.b/||a||.]||b]|]|
e Bilinear score(a,b)=a’hb
s MLP score(a,b)=Sigmoid(W[a;b])

Transformers
3. Transformers
e Computing the similarities between raw data and the key (k), computing each key, output the
value with highest similarity score

4. Attention in transformers
e Attention transformer model

soft retrieval: retrieves all the values -> compute their importance wrt query, based on
the similarity between the query and their keys

values, queries, keys, are d-dimensional embeddings
attention(q, k, v) = Zsimilarity{q. ki) x v

e Compute value, key, query (X as input)
2 =nxi =ixk nxk
Q_quJ XER 2 Noe-- b QE‘_
K=XNKJ Xe ___||xi) WKE :___ixk) Ke ___nxk

V=qu,){E___I‘uxlJ Nve__._:lxvj VE = EAY

e Self-attention in transformers

New representation of each token based on weighted combination o other tokens
(contextual representations)

Vs Yo { e

Attention(Q, K, V') = softmax(

5. Multi-head attention
e To improve the performance
- Divide representation space to h sub-spaces
- Run parallel linear layers and attentions
- Concatenate them back to form the original space

Multi-Head Auention

MultiHead(Q, K, V) = Concat(head, ..., heady,)W©°
where head; = Attention(QWZ, KWK, vwY)

6. Transformer encoders
e Each encoder layer consists of:
- A multi-head self-attention sub-layer
- Afully-connected sub-layer

- Aresidual connection around each of the two sub-layers followed by layer normalization
MultiHead(Q, K, V) = Concat(head,, ..., head;,) W©°

FFN(z) = max(0, zW, + by)Wa + by

LayerNorm(z + Sublayer(xz))

7. Positional Encoding

e When model does not have recurrent or convolutional layers -> doesn’t consider the order of

sequence

e Use this to allow the model to easily learn to attend by relative positions

RNN

| » Struggling with long range .
dependencies

e Gradient vanishing and explosion
e Large number of training steps .

& Recurrence prevents parallel L]
computation

8. Pytorch implementation

Transformer

Facilitate long range dependencies

Less likely to have gradient vanishing
and explosion problem

Fewer training steps

No recurrence, facilitates parallel
computation

class TransformerEncoder{nn.Module)

class TweetTransformer{nn.Module): CuassL}FLlLE
def __(self, input

__init

super(TweetTran
self.emb

return self.fc(x)

Transformers for Lan

nn.E
num_heads=4, batech first=Traoe)

self.norm = nn.Layeriorm{

forward(self, x}

g, k; v = self.linear_g{x), self.linear_k(x),
¥ = self.nora(self.linear_x(x)
x = self.norm(x + self.fc(x))
return x

inear_w{x)

self.l
+ self . attention(qg, k, v))

Modelin

9. Language Modeling

Word2Vec/Golve

- Learn static embeddings

- One embedding for all senses
Solution: use a self-supervised objective (e.g. predicting the next word) -> learn embeddings
over tokens
RNNs/Transformers

- Learn contextual embeddings

- ‘Training’ the embedding model at the same time -> embedding of a same word

changes according to the sentence it appears in

10. BERT (Bidirectional Encoder Representations from Transformers)

A Transformer model trained with two self-supervised tasks

Shows great transfer learning capabilities

Achieved SOTA results on various NLP tasks

Being used in Google search engine to represent user queries and documents

11. Input Embeddings

12. Task 1:

[CLS] -> indicates the start of the text; specific to classification tasks
[SEP] -> marks the end of a sentence, or the separation between two sentences
Sentence Embedding: Specifies each token belongs to which sentence, sentence 0 (vector of

0s) or sentence 1 (vector of 1s)

(o)) o))))
o N S e [
+ + + o+ o+ + +
s, (B R E) E) e) (S (]
+ + o+ o+ o+ o+ +
FOSRo. ‘EQHEIHEz:‘EaHE« Es “ EGHE?HEBH & | E“’]

Element-wise sum
Masked Word Prediction
Replace 15% of the words, at random, with [MASK] token
Using the context of non-masked words, predict original value of [MASK] token
Loss: computed on just the masked word (contrast with next word prediction)

10

wi) (wo) (w) @l ()
v | i 1 i !
| Classi Layer: Fully layer + GELU:_ENofm]
i 1 ! | =
(o) (o) (o) (o) (o J—
I 1 i 1 L =
Gaussian Error Linear Unit
Transtormer encoder
| ! 1 |

(et) [we) [w) [ows] [w]

13. Task 2: Next Sentence Prediction

e Determine whether two given sentences are consecutive or not in a larger corpus of text
Create 50% positive and 50% negative pairs of sentences (less than or equal to 512 tokens)
Loss function: BCE
The model's final layer outputs a probability score, and this score is compared to the ground
truth label
14. Transfer Learning

Objective:

[rai) large amounts - specific task with a
of text (books [labeled
¥ ep
Al Y
> 5%
T arvised ¥ %
| Model: -
Modei: pri-tramned
C__ . BERT —— BERT
A
Dataset: Tk ' Bty s pl Spam
WikjrpiA | Dataset: Win cah prizes Sgam I
Predict the masked word Do M Alrescin, i (i sttschoct ot B :
(langauge modaeling) ! '\. J

Transformers for Computer Vision
15. ViT (Vision Transformers)
e Achieve higher accuracies on large datasets compared to CNNs
- Higher modeling capacity
- Lower inductive biases
- Global receptive fields
e CNNs better than ViTs on ImageNet in terms of model complexity or size versus accuracy
e Characteristics:
- Train the neural network with much fewer data than transformer because the
transformer is kinda learning but ViT is using
- Taken in the image, split them into small batches (sth like slices into pieces)

Vision Transtormer (ViT)

Transformer Encoder

=
2
5
"
=
=
=
o
L
m
=
o
&
]
g

“Embeaang > @ @) €0 €

:
]
]
]
@ﬁ@ﬂ]ﬁ'}@lﬁ V| [P
|
i
]
]

b |Il:::|l‘:::‘r|‘1|:!li|sg [inear Projection of Flattened Patches]

SRR [t | e
O

-

Embedded
Patches

11

Graphical Neural Networks (GNN)
1. Motivation
e FEuclidean
- CNN: 2-dimensional images
- RNN: 1-dimensional texts
e Non-euclidean
- GNN: e.g.molicues
Deep Sets
2. Sets
e |f omit the Positional Encoding from Transformers:
- Order-invariance / permutation-invariance: The input will be treated as a set and the
learned representation won't change if you randomly shuffle the input tokens.
e Some data types that cannot be shuffled:
- Pixels within an image
- Words within a sentence
- Frame within a video
- Signals within an audio
e Model must be invariant to the order of the items <- the order can mislead the model
3. Deep Sets
e Learn embeddings for each item -> use a shared neural network to project each item to a
shared space
e Learn embeddings for the set -> use an order-invariant aggregation function (e.g. sum, mean,
max) to aggregate the embeddings (after aggregate is the representation of the whole dataset)
into a single embedding
e Use another neural network (e.g. MLP) to project the embedding to the final space

Graphs
4. Transformers without positional encoding
e The transformer learns an N*N attention matrix which represents a pairwise importance score
-> creates a fully connected graph over the input and learns the edge weights
5. Graphs in general
e GNNs are neural networks that function on graphs
e One base:
- Message-Passing: communicate with neighbors to update embeddings
Graphs are order-invariant, functions on graphs must be order-invariant too
Each graph contains an adjacency matrix, a feature matrix, and a graph
Two characteristics:
- Invariant -> Graph function: Output does not change in response to changes in input
ordering
- Equivariant -> Node function: Output properly changes in response to changes in input
ordering
A graph G=(V, E, X) is a data-structure that encodes node feature x,

pair-wise interactions or relations among concepts and
objects:

d(i)=5
node

edge i~j

e Visset of nodes representing concepts or objects

e ECVxVisa set of edges connecting nodes and d() =4
representing relations or interactions among them

e Xencodes the node features of each node

We can represent the edges in an adjacency matrix A:

1, (i,§) €€
=0, (i) EE

Degree of a node is number of edges connecting to that node d(i) =Y ay

i

12

GNN

6. Predict links between nodes
e.g.: predicting if there should be a bond between two atoms
e Node classification: assign labels or categories to nodes in a graph based on their structural
properties and the information from neighboring nodes.

Graph representation

Node feature: represent information about each node in the graph

Message passing

Node embeddings: represent information about each node in the graph
Classification layer: The output of this layer is typically passed through a softmax
function to obtain probability scores for each class. Usually FC layer.

Training

Inference

e Graph classification: assign a label or category to an entire graph or network.

Graph representation

Feature extraction: graph embeddings, graph kernels, or other graph-based feature
engineering methods.

Model selection

Training

Evaluation: Common evaluation metrics for graph classification tasks include accuracy,
F1-score, or area under the receiver operating characteristic curve (AUC-ROC),
depending on whether the task is binary or multiclass classification.

Hyperparameter tuning

Inference

e Link prediction: identify pairs of nodes in the network that are likely to be connected in the future
or were overlooked during data collection.

Graph representation

Train-Test Split

Feature Engineering: For each pair of nodes without an edge in the training set (i.e.,
potential links), you extract or compute relevant features that describe the relationship or
similarity between the nodes.

Model Selection

- Training
- Evaluation
- Inference
Node classification
z: = f(hy)
S sesenel e
@‘/O GNN 0 Graph classification
zg = [(D,ep i)
o~ X S, O Ty o= (e
. .].11])-|1.I;-.. . o I,.n-tt.-nl.'s
(X,A) (H.A)
.. | Link prediction

W zi; = f(h hj.eq5)

7. Message-Passing
For each node in graph:
e Aggregate embeddings of its neighbor nodes

Aggregate function must be an order invariant function such as sum, mean, makx,
attention, etc.

e Combine the aggregated embedding with the node embedding
e Update the node embedding

13

Neighbors of
node v
JI
/
hl¥) = COMBINE® (hy‘ 1), AGGREGATE®! ({ (hif- U g1, (:‘,,_.)-. ue ,-\"{:,-}}))

og B0 ©O [g o B0 - N

: : 7X ,. |:> ::> 'I: 7*/ Edge feature
ool 0o éa mm%
Input Node Features Node Embeddings

8. Read-out (graph pooling) function

() = COMBINE(Y) (h&_.*-”,AGGREGATE(“} ({ (hE,"‘ b, plk-1), ew): ue N(u}})) he = READOUT({#{* | v £ G})

m

] =

Initial Node Features Node Embeddings

9. GNN models

Different instantiations of aggregation function define different GNN models

Graph Embedding

B = COMBINE® (h{*~), AGGREGATE® ({ (h{*~1), A, em,): ue N(v)}))

SN N0
\ D 0o ——— \‘ X) ._‘u,,‘_ ; - x
X4 2 & B @ N
Convolutional Attentional Message-pussing
h; = ¢ | x, @ cij(xy) h =¢ (xh &) a(xi.-xj)if*{xj)) hj=¢ (xa, @ %"-‘(anj))
e JENi JeM JENG
Combine Aggregate [velickovié

10. Graphical convolutional networks (GCNs)

A layer of a GNN is basically a nonlinear function over node features and adjacency
matrix:
=y
4 . Hs.ff{

H=Ff(AX) Timosowlreschnaia
The simplest model that we can define is:

Lm0 W T iur.'..\f% of their mmadioie F'-"éh.rﬁb—";
H = o (AXW)
/ Ty

non-linearity Weight matrix
e Limitation 1: For every node, we sum up all the feature vectors of all neighboring nodes but not
the node itself.
- Fix: Add self-loops (add the identity matrix to A)
A=A+I
[J

Limitation 2: A is not normalized and therefore the multiplication with A will completely change
the scale of the feature vectors.

- Fix: Symmetrically normalize A using diagonal degree matrix D such that all rows sum to
one

D

o

AD™?

14

With these fixes, we define a GCN layer as follows:

H=0 (D *AD 1 XW)
11. Deeper with GNNs

A GCN layer updates the node embeddings based on the features of the immediate

neighbors (recall multiplication with A)

We can influence the embeddings from further neighborhood by stacking GCN layers

This is analogous to increasing the receptive field in CNNS

bflctincing Tre lEormec Embeplpings by ol BT, Neitdbboeritood

HY =X
Y =g (D*AD tHOWWY)
Node embeddings in layer 2
———___ are computed based on
contributions from 1-hop
and 2-hop neighbors

HY — U(D'%AD-%JI*-'*Wﬂ‘?-') -

O — 4 (D'"#AD" T git- prl_fl)
Pl of bine- imfortonie

7 L
[(=it]

12. Graph Attention Networks (GAT)

Learn an attention score between two nodes (e.g. learn the contribution weight of neighbor nodes)

1. Use ashared neural network to compute an attention score between two nodes.
€ij = NN(hn h})
2. Normalize the attention scores
exp(€i;)
a;; = softmax;(e;) = <~
Ly ,'.'(1,?) Zke)\."i eXp(B\gk)
3. Update the node embeddings based on the attention score

hl- =0 Z O.’t'jWhj
JEN;

Pytorch Implementation

Classify the following molecule using a GCN to a toxic/non-toxic where node features represent the atom type

(Carbon, Hydrogen, Nitrogen)
Dense Implementation

[0.0,1] [0,1.0]

class DenseGCN(nn.Module):

def

_init (self):

super(DenseGNN, self). init ()

i = 1 lineor losen, §5€1F.F€l = nn.linear(3, 32)
(o) (1) isel*F.-FcZ = nn.Linear(32, 64)
[1.0,0] ““\‘\ P self.fc3 = nn.Linear(64, 1)
— A s \ o) Gemnputin " R s ey Pold prei 15 The Glpg e
(4) Kozl MR ”iul g e Mg TR et fcrwardEself, :;, ') £
= ~ ,{’;\(s WSl S P TIM (»A = A + torch.eye(A.shape[@])
& i N \2) mwin pdjeiant st) 1 D = torch.diag(torch.sum(A, dim=8))
(0.0, 1] maa A 0.1, 0] G s e D = torch.pow(D, -8.5)
I-’"E'\. .r’?) [1.0.0] Fue v The)...49- IJ».JI:!.C . A = torch.mn{torch.mm(D; ‘A); B)
2 ,'}'_'; onch heve & Woono e x = torch.mm(A, x)
Hites A\ / l_l x = F.relu(self.fcl(x)))
e | (4) \ \ T 0003 901 Node embeddings - x = torch.mm(A, x)
B (3§ o gg ,pY:y PRl “~x = F.relu(self.fc2(x)))
— WS | _? s - i1 654 = 5 a Graph embedding ~——g = torch.sum(x, dim=@)c- & Wee
% Lt oo s = BBE X6 100 g : _y = torch.Sigmoid(self.fc3(g))
= raph-level prediction return y

13. Dense Implementation

e Most graphs have mostly zeros in adjacent matrix

e |t uses 2D space for adjacency

e We can represent this graph with only 4 edges where dense implementation represents it with
25

e Use PyTorch Geometric (PYG) to implement

15

14. Sparse Implementation

.10
©. t_' l = import torch
-_:0\)] |>__1_/ from torch_geometric.data import Data
- T
1,00 4 s .
\ edge_index = torch.tensor([[®, 1, 1, 2, 3, 3, 3, 4],
[3; 253; 159 I; 4 311
P dtype=torch.long)
:\E.*’I x = torch.tensor([[2, &, 1],
[e, 1, @8],
1,0.0
Bt (1, e, el,
[e, 1, o],
[1, @, &8]], dtype=torch.float)
001
data = Data(x=x, edge_index=edge index, y=[1.@
A_[ot]aaa:s‘i] Ll';ﬂ (x=x, edge_ ge_ . y=[1.8])
32310143 510
100
Sparse Implementation —
= with GATConv.
TR import torch |
! o import torch.nn.functional as F —— -
;1) from torch_geometric.nn import GCNConv
o
n..0 // \ class SparseGCN(nn.Module):

def _ init_ (self):

L1 super(SparseGCN, self). init_ ()
) self.genl = nn.GCNConw(3, 32)
self.gcn2 = nn.GCNConv(32, 64)

WAL,

self.fc = nn.Linear(64, 1)

+

def forward(

self, data):

, edge_index = data.x, data.edge_index

F.relu(self.gcnl(x, edge_index))
F.relu(self.gen2(x, edge index))
torch.sum(x, dim=8)
torch.Sigmoid(self.fc(g))

urn y

y_fpr123334
Tl 23101048

S = =
oo -

I Mg X X X
oo

15. DataLoader & Dataset
e Dense implementation: batching is done by creating a diagonal matrix of adjacency matrices

e Sparse implementation: uses an index vector that maps each node to its respective graph in the

batch

from torch_geometric.datasets import TUDataset
from torch_geometric.loader import Dataloader

dataset = TUDataset{root='/tmp/ENZYMES', name='ENZYMES')

loader = Dataloader{dataset, batch_size=32, shuffle=True)
for data in loader: #Graphs in batch
print(data) _,/J
break o
"__,__’f'
»»> DataBatch(batch=[1882], edge_index=[2, 4866], x=[1882, 21], y=[32])
/. { 5| Timesmmione | 2z

/
/

/

#Nodes in batch

Node — Graph mapping #Edges in batch Node feature dimension

Sparse Implementation

. from torch tric.nn import GCNC lobal_add_pool
Now that we have a batch of graphs, o S B e

we need to only sum up node
embeddings corresponding to each
graph

class SparseGCN(nn.Module):
def init (self):
super(SparseGCN, self). init_ ()
self.gcnl = nn.GCNConv(3, 32)
self.gen2 = nn.GCNConv(32, 64)
self.fc = nn.Linear(&4, 1)
def forward(self, data):

We can use PYG functions that accept X, edge_index = data.x, data.edge index

the node embeddings and node-graph x = F.relu(self.genl(data.x, data.edge index))
. x = F.relu(self.gcn2(x, data.edge_index))
mapping g = global_add_pool(x, data.batch)
y = torch.Sigmoid(self.fc(g))
return y

16

Training

from torch_geometric.datasets import TUDataset
from torch_geometric.loader import Dataloader

dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')
loader = DatalLoader(dataset, batch_size=32, shuffle=True)

model = SparseGCN()
optimizer = torch.optim.Adam(model.parameters(), lr=8.81)
criterion = nn.BCELoss()

model.train()
for epoch in range(10@):
for data in loader:

optimizer.zero_grad()
out = model(data)
loss = criterion(out, data.y)
loss.backward()
optimizer.step()

17

Generative Adversarial Networks
Generative Models
1. Identify different models
e Identify if a tweet is real or fake
- Supervised task, discriminative model
- Approximate p(y|x) -> learns to approximate the conditional probability of a class given
the input data
- e.g.: classifier -> input img, output label
e Generate a new tweet
- Unsupervised task, generative model
- Approximate p(x) -> they are learning the probability distribution of the data itself
- e.g.: variational autoencoder -> input encoding, output img
2. Generative learning
e Unsupervised learning task
- No ground truth wrt the actual task that we want to accomplish
- Learning the structure and distribution of data, rather than labels for data
- Loss function -> an auxiliary task that we know the answer to
3. Generative models
Used to generate new data, using some input encoding.
e Different families of deep generative models:
- Autoregressive Models
Variational AutoEncoders (VAEs)
Generative Adversarial Networks (GANSs)
- Flow-Based Generative Models
- Diffusion Models
e Unconditional Generative Models
- Random noise as input
- No control over what category they generate
e Conditional Generative Models
- User has high-level control over what the model will generate
- Encoding
One-hot encoding of the target category and random noise
An embedding generated by another model (e.g. from CNN)
4. Problem with autoencoders
e Vanilla autoencoders generate blurry images with blurry backgrounds <- compare pixel to pixel

Generative Adversarial Networks
5. Generative Adversarial Networks
e The loss function of the generator is defined by the discriminator
e |dea -> train two models together
e Generator model
- Foll the discriminator by generating real-looking images
e Discriminator model
- Distinguish between real and fake images
6. GAN model
e Loss function for MinMax game
- Loss function - BCE: Learn discriminator weights to maximize the probability for
accurate labeling
- Loss function - Discriminator: Learn generator weights to maximize the probability for
false labeling
e Two parts
- Generator network

18

Input -> a noise vector
Output -> a generated image
- Discriminator network
Input -> an image
Output -> a binary label (real or fake)
Process
- Two things evolving together, play a min-max game
- The discriminator will try to do the best job it can
- The generator is set to make the discriminator as wrong as possible
Training
Alternate between training the D and the G

- for number of training iterations do

et |zr»f»h{—- ?

g 7 for(E)steps do 1L (b Pra. L FR

o) D v ny | Sample minibatch of m noise samples {z{“ 2™} from noise prior py(z). 0 Lol
proes | oo fea e Sample minibatch of m examples {«("), ..., =™} from data generating distribution

s a
' nm{z] L-l
the discrimina a.sc&dm its :.tocahasuc radient;
SCAMINPOLY £ gl
mmmwuﬂm: To Mo b Thescrminpsar

e

Sl We et ke 1 £
| | s s 4 dsTP mZ[lwﬂ(ﬂ”)Hos(_l_—:_ =

end for - d d

'|I ' - » Sample minibatch of m noise sarnp]es {zm .., 2™} from noise prior pgl2).

| 5 ot ¢
Lay s

® Update the generator by descending its stochastic gradient:
Diu'%zlzn
1 by Trodining ;
et g| Wislte T - 9] The I;]_-u.i'.;fx'
vend for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

7. Pytorch implementation

Discriminator

class Discriminator(nn.Module)
def _ init_ (self):

super(Discriminator, self)._ init_ ()

self.model = nn.Sequential(
nn.Linear(28*28, 308},
nn.LeakyRelU(®.2),
nn.Linear(38@, 18@),
nn.LeakyRelLU{@.2},
nn.Linear{18e, 1))

def forward(self, x):
*x = x.view(x.size(8), -1)
out = self.model(x)
return out.view(x.size(@))

Generator

class Generator{nn.Module):
def __init_ (self):

super(Generator, self). init_ ()

self.model = nn.Sequential(
nn.Linear(l@e@é, 3@@),
nn. LeakyReLU(8,2),
nn.Linear(368, 28%¥28),
nn.Sigmoid(}))

3 3

=

def forward{self, x):
out self.model{x).view(x.size(®), 1, 28, 28)
return out.view(x.size(8))

Training the Discriminator

def train_discrimintor(discriminator, generator, images):
batch_size = images.size(@)
noise = torch.randn(batch_size, 1@@) p, .
fake images = generator{noise) . + id
inputs = torch.cat([images, fake_images]) = lo
labels = torch.cat([torch.zeros(batch_size), #

tarch.ones{batch_size)]) # Fak

outputs = discriminator(inputs)
loss = criterion{outputs, labels) Jcl
return outputs, loss

Training the Generator

def train_generator(discriminator, generator, batch_size):
batch_size = images.size(@)
noise = torch.randn(batch_size, 1@8)
fake_images = generator(noise)
outputs = discriminator(fake_images)
Only looks at fake outputs

gets rewarded if we fool the discriminator!
labels = torch.zeros(batch_size)

loss = criterion(outputs, labels)

return fake_images, loss

19

Problems of Training GAN
8. Vanishing Gradients

Discriminator as loss function for the generator,

If the discriminator is too good, small changes in the generator weights won’t change the
discriminator output,

Make no gradients, can’t improve the generator

9. Mode Collapse

If generator starts producing the same output (or a small set of outputs),

- Fix: Discriminator rejects that output
If the discriminator is trapped in local optimum, it cannot adapt to generator,
The generator can fool it by only generating one type of data (e.g. only digit 1)

10. Failing to Converge

Since it takes a long time to train, we use:
- LeakyReLU Activations (training is more stable)
- Batch Normalization
- Regularizing discriminator weights, and adding noise to discriminator inputs

Applications of GANs
11. Grayscale to Color

b——«-

Convert to Conditional
grayscale Generator

— G —'F-;‘—
L i

3 p = Heal/Fake

Discriminator

12. Conditional Generation
How could we have a GAN trained on MNIST output only specific digits?

Data Preparation: Load the dataset, and split it into different classes
Conditional Labeling: Each image is paired with corresponding labels
Generator and Discriminator Architecture:
- The generator should take random noise and the condition as inputs and generate an
image corresponding to that condition.
- The discriminator should take an image and the condition as inputs and predict whether
the image matches the condition.
Loss functions: The discriminator should take an image and the condition as inputs and predict
whether the image matches the condition.
Training
- During training, sample random noise vectors and corresponding condition labels.
- Input both the noise and condition to the generator to generate images.
- Input real images with their corresponding condition labels to the discriminator.
- Update the generator and discriminator based on their respective losses.
- Ensure that the discriminator learns to correctly classify real images and that the
generator learns to generate images conditioned on the label.
Evaluation

13. Style Transfer

Cycle GAN: Cycle loss is reconstruction loss between input to cyclegan and output of cyclegan
to ensure consistency.

20

Loss o criieion |

“Gur

Real Image in domain A Fake Image in domain B \ Reconstructed Image

’) Gaa generates a reconstructed image of domain A
= This makes the shape to be maintained
real or fake ! Ds - when Gas generates a horse image from the zebra,

Discriminatar for domain B

]

Real Image in domain B

Adversarial Attacks

14. Adversarial Attacks

e Goal: Choose a small perturbation (e) on an image (x) so that a neural network (f) misclassifies

(x+e)

e Approach: Use the same optimization process to choose e to minimize the probability

-> f(x + €) = correct class
(e) as the parameters
15. Targeted/Non-targeted Attack
e Non-targeted attack
- Minimize the probability, make the classifier to make mistakes
-> f(x + €) = correct class
e Targeted attack
- Maximize the probability, push it to make mistake at a certain type
-> f(x + e) = target class
16. White-Box/Black-Box Attacks
e White-box attacks
- Assumes that the model is known
- Need to know the architecture and weights of (f) to optimize (e)
e Black-box attacks
- Don’t know the architecture and weights of (f) to optimize (e)
- Substitute model mitigates target model with known, differentiable function
- Adversarial attacks often transfer across models
17. Applications
e 3D Objects
e Printed Pictures
e Adversarial T-Shirts
18. Defense Against Adversarial Attack
e Failed Defenses:
- Adding noise at test time
- Averaging many models
- Weight decay
- Adding noise at training time
- Adding adversarial noise at training time
- Dropout

21

Recurrent Neural Network
Motivation
1. Autoencoders:
e used to learn an embedding space
e Encoder: data -> embedding
e Decoder: embedding -> data
2. Numerical Features
e Superficial relationship
- The neural network will learn it during the training and when you want to do
generalization or inference or test your neural network, a big drop will see in
performance, because overfitted to something that is very superficial.
e Numbers have no relationship
- Integer encoding is not enough when there is no order
- An order may lead to poor performance
e Convert words into numerical features
- Treat each word as a unique feature
3. One-hot encoding
e Convert word features into numerical features with one-hot encoding.
e Turn the features into numerical features, such as if two words are completely different, the
similarity value will be zero.
e Assumes each word is completely independent
Problems:
- Encoding -> Dimensionality increase
- One-hot encoding assumes that two boards are either identical / not identical, which
means that it cannot capture this notion of closeness that we want to have.
Word Embeddings
4. Characteristics
Words are different from images
Characters are not like pixels in images
The meaning of a word is not represented by the letters that make up the word
Meaning comes from context
Meaning comes from the sequence of characters and how they are used in conjunction with
other words
History: coined in 2003 (Bengio et al.)
Two commonly used models (most famous models):
- Word2Vec model, 2013 (Mikolov et al.)
- GloVe vectors, 2014 (Pennington et al.)
5. Text as Sequence
e Key idea: the meaning of a word depends on its context
e Architecture of a word2vec model:
- Encoder: one-hot embedding -> low-dim embedding
- Decoder: low-dim embedding -> nearby words
e Process: The word at the center as the word itself, the words at left and right as its context.
Embedding considers both the word itself and its context in order to come up with end
meanings.
6. word2vec
e Two ways to train this model
- Skipgram -> Predict context from target
Flip the input and output compared with CBOW. Pass the output as input (the center
word), and the input as output (words to predict the center).
- CBOW -> Predict target from context
Pass the context words to the model and the model has to predict the centre word.

22

e CBOW is easier because it only needs to predict one word, but the SKIPGRAM performs better

* o @
SKIPGRAM J—/,-' =

~ Q7™
wa §f o
7 z Z logp(wy|wy. ;) T Z Z logp(wy4;|w:)

t=1 —c<j<e,j20

t=1 —e<j<e,j#0

7. Skip-Gram Model

e Predict context words from target word
e Skip-Gram components need not be consecutive in the text
e Can be skipped over, or randomly selected from many documents
e Different types:
- n-Gram: contiguous sequence of (n) items from a given text
- k-Skip n-Gram: maximum num of skips is (k), a combination of (n) tokens or (n) words,
to model real-world scenario
Neighboring words are defined by the window size -> a hyperparameter
Model
- The output layer is only used for training
- After training, only keep the weights from input to hidden layers
- Words that have similar context words will be mapped to similar embeddings

Ne- howe, the Inpia (on Creoe- The |osk up-fosie. .

Skip-Gram Model .. i e wnr s

b wp obla R oy Qutput Layer
R Softmax Classifier

1
Hidden Layer

Input\fectcr Linear Neurons I'. Z J
0 o
2' Z ~J Z i . “ability”
[o] Ne o
0 :
B ¥) z
0 L) il
o 3
2
= b8

meuro

8. CBOW (Continuous Bag of Words) Model

e Predict the center word from a fixed window size of context words
- Pass in the context words, predict the center word

9. CBOW versus Skip-Gram

e Skip-Gram
- Works well with small datasets
- Better semantic relationships (cat & dog)
- Better representation of less frequent words
e CBOW
- Trains faster than Skip-Gram as the task is simpler
- Better syntactic relationships (cat & cats)
- Better representation of more frequent words

23

10. GloVe: Utilizes the global statistics
e Compute co-occurrence frequency counts for each word
- Represented as a matrix where element X(ij) demotes the number of times word (i)
appears in the context of word (j)
e Optimization: Inner product of word vectors should be a good predictor of co-occurrence
frequency

& e |

E= (= TR N R 0
| <

L Qare

ey
L=t F"-'-}\u.l-’\) = (A Lo oo Preguorians)
Jd 2 I

11. PyTorch GloVe Embeddings

Use torchtext package to load pre-trained GloVe embeddings
First time you run it will load an 862MB file containing pretrained embeddings

6B was trained on Wikipedia 2014 corpus

import torch

import torchtext

glove = torchtext.vocab.Glove(name="6B", dim=58)
glove['cat"]

tensor([©.4769, -8.8845, ...])
Distance Measures

12. Measure of distance in the embedding space
Euclidean Distance — L2-norm of embeddings

|
DX, P)=| X~ |- \l 3l -
K =0

Cosine Similarity — cosine of the angle between embeddings (invariant to
magnitude)

Y.V ~d
Sim(irf} = cos(#) = {\Y Ay Lt:fl Tilli

= = & fod
Xy \,-’E.f-_nmf\iiu_uy.z

Euclidean Distance:

: & 1 rI ! :l i ¥ = 4 I
Cosine Similarity:
t | it
glove['cat')] .unsqueeze (0), glc vl : 1 ze (0)
13. Word Analogies
Vector Math King s .
" Queen

King - Man Man

;/Voman

14. Bias in Word Embeddings
e Machine learning models are biased
e ML models learn the biases present in the data it is trained on

Language Models
15. Language Modelling
e Explain
- Have a model that can learn the probability distribution over a given language or other

stuff
24

Because the language model needs to understand the semantic to be able to predict the
probability

Learning probability distribution over sequences of words

Text understanding
Text generation

16. Working with Text
Difficult for text:

The meaning doesn’t depend on characters
It has dependencies

17. Sentiment Analysis
Goal: Given a piece of text, identify the sentiment that the text conveys
Dataset: Sentiment140

18. Limitations
The model does not take into account the order of words

Fix 1:

Fix 2:

Split the tweet into words by white-space

Look up the GloVe embedding for each word, ignoring words that don’t have
embeddings

Add up the word embeddings to obtain an embedding for the entire tweet
The tweet embedding will be the input to a fully connected neural network

Concatenate the word embeddings -> train a neural network that takes the concatenated
embedding as input

Input The feod | was |adequate | but | not | just | great

Glove Embeddings

Fully-Connected l
Network

I Prediction |

Drawbacks:
~Fixed-Length input: If your input text varies significantly in length, you may need to pad
or truncate the sequences to a specific length.
~Loss of sequential information
~Increased Dimensionality:
If you have a large vocabulary and embeddings with high dimensions, the
concatenated representation can become very high-dimensional.
lead to increased computational complexity and the risk of overfitting, especially when
you have limited training data.
~QOut of vocabulary words (OOV)
~Semantic Gap: Concatenating word embeddings treats all words equally, regardless of
their importance in the task

Concatenate the word embeddings -> train a 1D convolutional neural network that takes
the concatenated embedding as input

Input The food was |adequate | but | not | just | great
Glove Embeddings
ConvNet 1 l

| Prediction | Tha dog that tha cst chasad ran away

Drawbacks:

~Lack of contextual information

~Local context only: 1D CNNs are effective at capturing local patterns in the input, but
they may struggle with capturing long-range dependencies or global context in the text.

25

~Generalization: Depending on the choice of hyperparameters and architectural details,
1D CNNs may not generalize well to diverse text data or handle out-of-distribution
examples effectively.
Recurrent Neural Networks (RNNs)
19. RNNs
e Take in variable-sized sequential input
e Remember things over time, or have some sort of memory or state

Input The | food | was | adequate | but | not | just | great
| / _I
L] ' ¢ ‘ 1
Glove Embeddings

Context Vector 1]

"~ __ Start with an initial hidden state with a

blank slate (can be a vector of all zeros)
e Updating Hidden State: updated based on the previous hidden state and the input using the
same neural network as before (weight sharing)

e Last Hidden State: Continue updating the hidden state until we run out of tokens

- Use the last hidden state as input to a prediction network

- The whole thing is end-to-end, when you train, you get gradients here and you

backpropagate through the neural network
- The last hidden state (memory) has compressed all the information that you have seen

so far
output = prediction_function(hidden)
Input The | food was adequate but [not just |great
Glove Embeddings
Context Vector 0
Fully-Connected
Network

RNN — Feature Extractor

- y : b 3 Prediction
G beearied paelstis | otly reed 1 0 i Thias lowr hiclotler biode

20. RNN Layers
e |n each step, it receives input and its previous hidden state and updates it, then the next input

and another update make the overall update. -> This is a feedback loop, there is a recurrence.

| rnse | e

P T % (rede\ ey
I) hy = ffh(Whi': + Uphyy + bu}
A = A Al Al—— A ;
LA | | 3 | é 1 é | é) |?._u_:,‘.--._-,. <y = gu(Wyhy +b,)
|.‘A-';-M~'-'.-| WAL T hes =.-.'\<¥'.--J| +he hiplolen o g Gwrrent Lled Ghng Mbe T [Previows s L
S ; Whacle 16 5 ipior- e Lipaa., o T
fove hee roblum of overiiting 1o 0 Fo network fo MOk’ (o preclicri
rnn_layer= nn.RNN(input_size=56, # dimension of the input 'token
hidden_size=64, # dimension of hidden state
batch_first=True) # input format [batch, sequence, feature]
bz (WA 1 Uo7 PR Lagenie, dimass

My 2 LWhBe + U b + bl

21. PyTorch Implementation
e RNN Architecture

26

class TweetRNN(nn.Module):
def init__ (self, input_size, hidden_size, num_class):
super(TweetRNN, self). init_ ()
self.emb = nn.Embedding. from_pretrained(glove.vectors)
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_ first=True)
self.fc = nn.Linear{hidden_size, num_class)

def forward(self, x): 4l
k-up the embeddings __',.-/' ayers__________, batch
x = self.emb(x) s

Set the initial hig

h@ = torch.zeros(l Efé), self.hidden_size)
Forward propagate the RNN
out, = self.rnn(x, h@)
Pass the output of the last step to the classifier
return self.fc(out[:,-1,:])
model = TweetRNN(S58, B4, 2)

e RNN Training

def train(model, train, val, n_epochs=5, lr=1e-5):

criterion = nn.CrossEntropyloss()

optimizer = torch.optim.Adam(model.parameters(), lr=lr)

for epoch in range(n_epoch}:

for tweets, labels in train:

optimizer.zero_grad()
pred = model (tweets)
loss = criterion(pred, labels)
loss.backward()
loss.step()

22. Sequential Learning
e Inimage, we do not want to learn different weights for every pixel
- CNNs use convolutional filters with parameter sharing
- CNN reuses convolutional filters for every pixel
e In sequence, we do not want to learn different weights for every token
- RNNs use a shared neural network to update hidden state
- Reuse the RNN module for every token in the sequence

- Keep the context of the previous tokens encoded in the hidden state (h)

23. Different RNN models

RNN Unrolling RNNs

If we consider the concatenated input/hidden and output/hidden vectors as simply
input/output, forward path in RNN is simply a fully-connected NN

L ana [ut .frum“":j

bingar e L |insar Josgar 3

R, J\.

hy = o (Wagy + Uhey +by)

B =

~ARERE: i | ok

27

24. Different types of prediction
Token-Level Predictions

"l'he. &md. was .adequate: but not .just great
| T i 7 T T T
£ |

= GloVe(OneHot(b

h = Update(h _, %)

1111
||

N
R R T e

Sequence-Level Predictions

| The | food | was |adequate but | not | just great

fre |oa7 hickden pude
= G'lc?\a'-:i(Dnni-tnt[))

/ . 4 . S ..~ h, = Update(h_ ., x)

B ¥ predict(h,,,,)
Limitations of Vanilla RNNs
25. Problem
e [f RNNs unrolled onto a long sequence:
- RNNs can be very deep -> Depth = Length of sequence
e 2 related problems with vanilla RNNs
- Not good at modeling long-term dependencies
- Hard to train due to vanishing/exploding gradients
26. Exploding/vanishing gradients
e Problem explanation
Suppose update function is a simple linear model. For simplicity, let's ignore inputs:

hg Eh_._ hl _.wh EI_., hn hr = Whhr--l

We can write this for all time-steps as:
he = (Wa)'ho

Then we have:

e Exploding gradients he—+ 0o if [Wh| > 1 % veey big Wl sligiy Logar e
e Vanishing gradient he —+0 if Wy <1
e Fix

- Gradient clipping -> exploding gradient: if gradient is greater than a threshold, set the
gradient to threshold

- Skip-connection -> vanishing gradient:
Skip connections to all previous states -> too expensive -> preserve the hidden
state/context over the long term

28

LSTM R
27. Gating Mechanism
e Approximate skip-connections to all previous states
- Learn to weight previous states differently instead (soft skip-connections)
e Use gates
- Learn to update the context selectively
Gating mechanism controls how much information flows through
Suppose X is a vector, control how much of X to pass to next step by:
- Sigmoid or Tanh
- A neural network
28. Long Short-Term Memory (LSTM)
e Components
- Long-term memory (cell state)
- Short-term memory (context or hidden state): Assigning different weights to different
hidden states
e Use three gates to update the memories

Long-term Memory C, | — [§ G&‘I:es_ | — | Long-term Memory C_,
Forget | Input

Short-term Memory H, |—>| L %

2 | Short-term Memory H,,

M

‘ Input X,

29. Different gates for LSTM
e Forget gate (long-term memory)
- How many of the historical memory should | forget

e ._';_{1.1._.-1_ (A1, 2] + by)

e |nput Gate (long-term memory)
- How much the current input should contribute to the memory

i =0 (Wi [he_y, 2] + by)

C, = tanh (We. [he_q, @] + be)

e Output gate (short-term memory)
- In order to update the short-term memory
- How much of the updated long-term memory should construct the short-term memory

29

e @
e
PR &

¥o

gt

‘o = 7 (Wo. [he_1,2e] + b,)
h!, = ot_tun_h(c!) Tonan The. Mo 2

Ci=fi.Cra+ ?‘-pét

e Updated long-term memory: the amount of past that is remembered (decided by forget gate)
combine with the memory that was just created (decided by input gate)

Yy
[e w c
G 5 o ’!
X N
Jrf it 2,
C:‘f
AT
wie of Tl

[)

30. Gated Recurrent Unit (GRU)
e Cheaper than LSTM since one less hidden state and one less gate
e Characteristics:
- Combine forget and input gates into an update gate
- Merges cell state and hidden state

zp = a (Wa. [he1, @] +02)
re = o (We [hi_1,@¢] + br)
by = tanh (W. [re. hy_1, 24 + D) |

he = (1= 2). he_y + zchy

31. LSTM/GRU versus RNN
e LSTMs/GRUs
can be trained on longer sequences
Are much better at learning long-term relationships
Easier to train
Achieve better performance than vanilla RNNs
e Inlong-term, RNNs will stick to the accuracy, but LSTM/GRU will improve even more
32. PyTorch implementation

¢ RNN
class TweetRNN(nn.Module):
def __init_ (self, input_size, hidden_size, num_class):
super(TweetRNN, self). init ()
self.emb = nn.Embedding.from_pretrained{glove.vectors)
self. i
self.rnn hidden_size, batch_first=True)
self _size, num_class)

def forward(self, x):
1 yok-up the embeddings

, X.5ize(@), self.hidden_size)
S ANN

self.rnn(x, he)
i the

 Pass the t of ast step to the classifier
return self.fc(out|

e GRU

30

class TweetRNN(nn.Module):
def _ init_ (self, input_size, hidden_size, num_class):
super(TweetRNN, self). init_ ()
self.emb = nn.Embedding.from_pretrained(glove.vectors)
self.hidden_size = hidden_size
self.rnn = nn.GRU(input size, hidden_size, batch first=True)
self.fc = nn.Linear(hidden_size, num_class)

def forward(self, x):

Look-up the embeddings

% = self.emb(x)

Set the initial hidden states

he = torch.zero x.5ize(@), self.hidden_size)

Forward propagate the RNN

out, = self.rnn{x, h8)

Pass the output of the last step to the classifier

return self.fclout[:,-1,:])

e LSTM

class TweetRNN{nn.Module}):
def _ init_ (self, input_size, hidden_size, num_class):
super(TweetRNN, self)._ init_ ()
self.emb = nn.Embedding.from_pretrained(glove.vectors)
self.hidden_size = hidden_size
self.rnn = nn.LSTM{input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_class)

def forward({self, x):

Look-up the embeddings
YA self.emb(x)
ar # Set the initial hidden states

hé = torch.zeros(1l, x.size(®), self.hidden_size)
c@ = torch.zeros(1, x.size(®), self.hidden_size)

Forward propagate the RNN
out, __ = self.rnn(x, (h8, c@))
Pass the output of the last step to the classifier

return self.fc{out[:,-1,:])

Deep & Bidirectional RNNs
33. Bidirectional RNNs

o Atypical state in an RNN (RNN, GRU, LSTM) relies on the past and the present
e One from left to right, the other from right to left, only take the sum of all the hidden state

Output Vel ¥ Vsl
Layer
+
Bidirectional LSTM &—- ILSTM % -- € ISTM — o 4
Fier h= lh I h]
LSTM LSTM LSTM
i:% Xl A Xy I

e When a prediction depends on the past, present, and future, we can exploit the future to
improve performance
- e.g.: machine translation
34. Deep RNNs
e Stack RNN layers to learn more abstract representations
- First layers: better for syntactic tasks
- Last layers: better on semantic tasks

35. PyTorch implementations

PyII'orch Details N = batch size
L = sequence length
e Mo o Tee D 9 if bidirectional=True otherwise 1 Output
self.rnn = nn.GRU(input_size=64, @"oehing H;n = input_size
hidden_size:ZSG, LiGaghing H,.; = hidden_size
batch_first=True, O TR
Dxnum_layer num_layers=4, T —-

— bidirectional=True)
T i i 1. e o) =]
hé = torch.zeros(2x4, x.size(@), self. hldden__s:u_e) $ — 1
e 5 e £ iy [
output, h_n = self.rnn(x, he) ¥

T agpenia [0~

—

|
5

tensor of shape (N, L DxH > ’JL‘J" tensor of shape
containing the nutputfeatures im (Dxnum_layers, N, H_)
(h,) from the last layeﬂ of the containing the final

GRU foreacht 5[hidden state for the input

o ¥ sequence.

Sequence-to-Sequence Models
36. RNN Model Types

Limi jor To (e .\',-.lml:-i.:zu_

onetoone onetomany many to one many to many rna'ny tomany *

CABEit e o [Cost
d |_ T SRS
1 - 0|0
{

t

; it
] [| e | CHAHI |

Al

-

-
_..l
||

T f T 7T
t t] t ¢
(.{.w‘i ot here o fove Sthe Weed SIS e,
| =i WL Inpwer Coh ke, el e it of ond, Llutie, Lingti o
b " Eferd placie !
ca : Ll af Mmoo o ubr\-‘ Ml It

37. Hidden State Differences

e RNNs for prediction (Encoder): compressing all information about the past
- Process tokens one at a time
- Hidden state represents all the tokens read this far

e RNNSs for generating sequences (decoder): Hidden state in each time step compressing all the

info about the future

- Generate tokens one at a time
- Hidden state is a representation of all the tokens to be generated

e Autoregressive: Say one word then say the next word based on the previous word

2.0 lnis chor oy the
R =
Llorr Ljmie

38. Sequence-to-Sequence RNNs
e Summarize:

- Use this promo code (<BOS>/<EOS>) to communicate with the neural network to notify
starting and ending,

- Then use cross-entropy to compare the loss and do the backpropagation,

- Then introduce teacher forcing to make sure that each step we receive the perfect
ground truth predictions rather than pollution that were done by the neural network.

32

e With variational autoencoders, we have this randomness -> pass a random number into the
decoder to generate an image for us, want to have diversity
e Different types:
- Teacher-forcing: Training-time behaviour must be changed
- Sampling and temperature scaling: Inference-time behavior also changes
39. During training
e When to stop/finish a generated sequence
- <BOS>: indicate the beginning of sequence
- <EOS>: indicates the end of sequence
e In each step, RNN receives an input which is the previous prediction and is predicting a class,
so evaluate at cross entropy loss at each generation step. Each character generates a loss.
Average of the losses will be the overall loss of the sequence.

| G H T

ol 08 A

N N R

PN\ E\E\]
Y 00 0 0 0O

40. Teacher forcing
e Reason

- Basically, we are increasing the noise and accumulating the error so at the farend it is
difficult to predict the last character because the noise.
e Process

- In each step during the training make the prediction and compare with the ground truth
label, and compute the cross entropy loss but don’t feed the prediction as the next input.

- Basically, instead of passing the previous prediction, pass the ground-truth label to there
as the input to the next step.
41. During Inference

e Problem: Always selecting the token with the highest probability won’t work well
- In practice, this greedy approach results in lots of grammatical errors
- Using a generative model: We want diversity not deterministic behavior
e Fix: sample from the predicted distributions
- Greedy Search: selects the token with highest probability as the generated token
max p(ti,t,...tn) = maxp(t1) x p(t2) x .-+ x p(tn)

- Beam Search: looks for a sequence of tokens with the highest probability within a
window

maxp(tl‘}t?a L fn) = maxp(tl) X p(t.?ltl) X p(tﬂ“n 1,°° '!f'2:t1)

Piaj<sos>, Is, it, x)

P(hot|<sos>, Is, it, x)
[o

| Plitj<sos>, Is, x) | ——» Pilj<sos>, Is, it, x)

4

/ Plhotj<sos>, s, x)

T

L

Fredss o, Pkl
_w Pl)] —b P(l|<sos>, Is, x)

<sos> <> P{lt|<sos>, x)
TR plj<sos>, x) — PYltj<sos>, I, x)
— __—» Plitj<sos>, o, x)
Plaj<sos>, I, X) = pyhello|

-
P(live{<sos=. I, x} Plworld|<sos>, a, x)

- Softmax Temperature Scaling: helps with the problem of over-confidence in neural
networks by scaling the input logits to the softmax with a temperature.
~Low Temperature (larger logits, more confident):
Higher quality samples, less variety;

If set the temperature to low value, your distribution will be moved toward a one-hot
representation.

33

~High Temperature (smaller logits, less confident):

Lower quality samples, more variety;
If set to high temperature, the distribution will be very similar to uniform distribution

&)

.
el

L softmax(z;) = W
i

42. PyTorch implementation
e Text Generator

class TextGenerator({nn.Module):
def _ init_ (self, vocab_size, hidden_size, n_layers=1):
super(TextGenerator, self)._ init_ ()
Identity matrix for generating 1-hot vectors
hwtity MR € self.ident = torch.eye(vocab_size)

Recurrent neural network lepe sipe (rinle. onte-he grcecking.
self.rnn = nn.GRU(vocab size, hidden_size, batch_first=True)
A FC layer outputting a distribution over the next token

self.decoder = nn.Linear(hidden_size, vocab_size)

def forward(self, inp, hidden=None):
Generate 1-hot vectors of input
inp = self.ident[inp]
Get the next output and hidden state
output, hidden = self.rnn(inp, hidden)
Predict distribution over next tokens
output = self.decoder{output)
return output, hidden

e Training Text Generator

def train({model, data, batch_size=1, num_epochs=1, 1r=8.81):
torch.optim.Adam(model.parameters(}, lr=1r)

optimizer =
criterion = nn.CrossEntropyloss()
data iter = torchtext.legacy.data.BucketIterator(data,
LG LR
batch_size=bhatch_size,

Tlakeesly
sort_key= lambda x: len{x.text),
sort_within_batch=True)

ciele hoeton

for __ in range(num_epochs):
Tacjdat =

Avg loss = @ ")
for (tweet, lengths), label in data iter: obs] o heree cBob

6ol § ?_.ar'get = tweet[:, 1:] for growncd freh fobeq =
linp = tweet[:, :-1] g

optimizer.zero grad() IngldeoTes & 1 o] praghiar

output, _ = model{inp}

loss = criterion(output.reshape(-1, vocab_size), target.reshape(-1))

loss,backward()

optimizer.step()

e Sampling Text Generator
%i: githar T reknes M -\engih, or fothes (o>

def sample(sample, maxﬂie?fle@, temperature=0.8): btoi 40 2 iy

generated_sequence = fird tha Gomsspmcbig, Ty] i G
inp = torch.Tensor([vocab_stoi['<B0S>']]).long() 1955, e
hidden = None

for p in range(max_len):
output, hidden = model(inp.unsqueeze(@), hidden)

_—> bimscie -.*i—-'rr'-;w Tamkersudis Fhin
(# Sample from the model as a’jmultinomial distribution
‘output_dist = output.data.view(-1).div(temperature).exp()

top_i = int(torch.multinomial(output_dist, 1)[e])
womple. from 6 Imefriroevs] dlipstion
Add predicted character to string and use as next input
predicted_char = VOCED_itOS[EUp_i]P}# e s 1o find tha Cormaspardling Ettiog
] ANPariing S0,

if predicted_char == '<E05>": acnasl aetpuwt

break
generated_sequence += predicted_char

inp = torch.Tensor{[top_i]).long()
return generated_sequence

Unsupervised Learning
Motivation
1. Challenges with Supervised Learning
e Requires large amounts of labeled data
e Obtaining labeled data is expensive
- Medical tests are expensive -> require a specialist to review them
- Chemical data collection -> wet-lab tests are time-consuming
e For more scenarios, there is a lot more unlabeled data than labeled
2. Feature Clustering:
e Learn the underlying patterns, then need a few examples just to label.
3. Definitions
e Unsupervised Learning
- Learning patterns from data without human annotations
- e.g.: clustering, density estimation, dimensionality reduction
e Self-supervised Learning
- Use the success of supervised learning without relying on human-provided supervision
(automatic supervision)
- e.g.: mask park of the input and predict the masked information
e Semi-supervised Learning
- Learning from data that mostly consists of unlabeled samples
- A small amount of human-labeled data is available as well
Autoencoders
4. General information
e The number of outputs is the same as the inputs
e Hourglass shape creates a bottleneck layer, lower dimensional representation
e ltis forced to learn the most important features in the input data and drop the unimportant ones

Reconstructed
Inpat = Heally thay are identical, -

"t input
X RS X
S
Bottleneck!
Encoder = Decoder
. | = | - - !
= 9o =] fo x
—
g

Find efficient representations of input data that could be used to reconstruct the original input:

e Encoder:
- Converts the inputs to an internal representation
- Dimensionality reduction

e Decoder:
- Converts the internal representations to the outputs
- Generative network

e Given a picture, encode to vector, embedding, then decode to get the original picture, compare

with the input image to see the differences.

—— Mz —_—

L:] ‘I;—U&L{,Q/ b — 0 L

lnpier > Unpooler —s pmbbeatiing > OheCetler

11 —
Dimenbionollog- feowition H -~ 2
ol ; N d,

35

5. Applications

Feature Extraction

Unsupervised Pre-training

Dimensionality Reduction

Generate new data

Anomaly detection -> Autoencoders are bad at reconstructing outliers

6. PyTorch implementations

Error rate: the number of things that you misclassified divided by the whole number of training
data.

class Autocencoder(nn.Module}:
def __init_ (self):
super(Autoencoder, self)._ init_ ()
encoding dim = 32 d
self.encoder = nn.Linear(28 * 28, encoding_dim)
self.decoder = nn.Linear(encoding_dim, 28 * 28)

def forward(self, imé}:
flattened = img.view(-1, 28 * 28)
CRPsel £ encolidt (f1attened)
sigmoid for scaling output from @ to 1
x = F.sigmoid(self.decoder(x))
return x _, .

criterion = nn.MSELoss()

7. Stacked Autoencoders

Usually want symmetric structure between the encoder and decoder.

Autoencoders can have multiple hidden layers: stacked (deep) autoencoders

Output and Input size need to be the same

One way to ensure that an autoencoder is properly trained is visualizing reconstructions

28*28 [Outputs J Reconstructed

Input

350

Hidden 3

" Embedding Space
(Codings)

100 § Hidden 2

Hidden 1

28*28 { Inputs]

350

8. Denoising Autoencoders

Noise can be added to the input images of the autoencoder to force it to learn useful features
Autoencoder is trained to recover the original, noise-free inputs
Prevents it from trivially copying its inputs to its outputs, has to find patterns in the data

PyTorch Implementation

how much noise to add to images
nf = B.4 imedice hoie Toser
add random noise to the input images

noisy_img = img + nf * torch.randn{*img.shape)

Clip the images to be between @ and 1

noisy_img = np.clip(noisy_img, @., 1.)

compute predicted outputs using noisy img
outputs = model(noisy img)
the target is the original img

loss = criterion(outputs, img)

9. Generating New Images with Interpolation

First compute low-dimensional embeddings of two images

Then interpolate between the two embeddings and decode those

Interpolated coding results in new images that are somewhere in between the two starting
images

Latent space: The space where the embedding lives on

36

e |f we randomly select a coding:
- The latent space in autoencoders can become disjoint and non-continues

Variational AutoEncoders (VAE)

10. Characteristics
e Encoder generates a normal distribution with mean miu and a standard deviation sigma instead
of a fixed embedding.
- An embedding is sampled from the distribution and decoder decodes the sample to
reconstruct the input

. :‘/f_\ W o distr hob o e N
T i e R e R i
s o MEBRRTS T y they input
A
; X /= x
loia wowt 4 pish Tius dismbation Probabilistic Encoder
Thet yow o leeing To ke ey o(zlx) Tow embeddings G pampitd Tom o Normel Olsribetion
2 Y bl - L ornd
Cloe oy Pobobies To TivL orid| Sampled
d—_-r.'up.q.g..i Withe the peen -‘i @ onal H | latent vector
gk g, of) Cleos i Wrobakd it
o R
_,/.b— Tad %E
+G‘ [OF -
f| il
.\'-:d.y.n_;z e Gyrbedol ml O"‘ (
UNIVORSITY OF 1 LpL U faa
*Tnnr\\rrn e by e basddipn - Distribuazion

e Before, the models we learned were all deterministic. If you give convolutional network train, if
you pass the same image twice, the output will be identical.

e Distribution calculation
We want the encoder distribution g4(z]z) = N(,) to be close to prior p(z) = N(0,I)

We can use Kullback-Leibler (KL) divergence to measure the difference between two
distributions P(X) and Q(X):

Drs(PlIQ) = 3 ple)log (p?‘;)
zeX

If we plug-in the encoder distribution and the prior into KL-divergence of two
multivariate Gaussians, we get:

| |
N eerie: -t 1AL o BT —T & T =
WrcT's The RRncl- bedwedye thil ST

The. enceder 1% leorning pnd e peemol Qstthaiors

”
Dy1(plg) = E ui +o? — (1+log(o?))]
11 ot

Lre= (@8 g
« U
_— Encoder | Decoder
Training x & e b d

©
Yol ppidams um Z = 1+00E
NGO, D) sample &

N

1 . y A
Lu=5 Y [of +ui— (1+1log(o}))]

=1

Decoder Encoder

Generating d Embedding x —

e Probabilistic
- For the same input, it will give you different results every time
- Their outputs are partly determined by chance even after training
e Generative
- It can generate an infinite number of examples for you, that were not part of the training
data

37

- They can generate new instances that look like they were sampled from the training set
11. Different types autoencoders
e Regular Autoencoders -> have problem with overfitting
e Noisy autoencoders -> have problems if generate stuff for the smoothness of the embedding
e Variational autoencoders

Convolutional autoencoder
12. Convolutional autoencoder
e Use spatial information
- Encoder: Learns visual embedding using convolutional layers
- Decoder: Up-samples the learned visual embedding to match the original size of the
image
~Up-sampling: It involves increasing the size of the data from a lower resolution to
match a higher resolution. In the context of image processing, this often means making
an image or a feature map larger.
13. Transposed Convolution
e Similar to convolution, but the inverse effect of a convolution
e |Instead of mapping k*k pixels to 1, they can map from 1 pixel to k*k pixels
o=(i—1)xs+(k—1)—2p+op+1

.S

e 3 .,
Fe L] L] LY "N e

output dimension input dimension stride kernel size padding output padding
1. Take each pixel of your input image
2. Multiply each value of your kernel with the input pixel to get a weighted kernel
3. Insertitin the output to create an image
4. Where the outputs overlap sum them
2,

cmmmmmn

W | Wy | Wy
§ =Wy | Ws | W |

i
Wy | Wg | Wy | |

| Stride: 2

s
ORONTO fhe Output: 4x4
14. Padding
e Output padding
- Output padding is provided to resolve this ambiguity by effectively increasing the
calculated output shape on one side
- ltis only used to find output shape but does not actually add zero padding to output
- When stride > 1. Conv2d maps multiple input shapes to the same output shape
e The effect is the opposite of what happens with the convolution layers
- Compute the output as normal

- Remove rows and columns around the perimeter

Input: 2x

15. Strides
e The effect is opposite from what happens with the convolution layers
e Increasing the stride results in an increase in the upsampling effect
16. PyTorch implementations
e Compare

38

conv = nn.Conv2d(in_channels=8, convt = nn.ConvTranspose2d(in_channels=8,

out_channels=8, out_channels=8,
kernel_size=5) kernel_size=5)
x = torch.randn(2, 8, 64, 64) convt(y).shape # should be same as x.shape
¥y = conv(x) e
y.shape g
.\f'"'r;»"‘r‘l e =
torch.Size([2, 8, 68, 68]) “torch.Size([2, 8, 64, 64])

Transpose padding

convt = nn.ConvTranspose2d(in_channels=16,
out_channels=8,
kernel size=5,
padding=2)

x = torch.randn(32, 16, 64, 64)
y = convt(x)
y.shape

torch.Size([32, 8, 64, 64])

o=(i—-1)xs+(k—1)—2p+op+1

Add a stride to the convolution to increase our resolution

convt = nn.ConvTranspose2d(in_channels=16,
out_channels=8,
kernel_size=5,

stride=2,
padding=2)
X = torch.randn(32, 16, 64, 64)
y = convt(x)
y.shape

torch.Size([32, 8, 127, 127])

o=(i—1)xs+(k—1)—2p+op+1

Output padding type adds an additional row and column to the output
convt = nn.ConvTranspose2d(in_channels=16,

out_channels=8,

kernel size=5,

stride=2,

padding=2,

output_padding=1)

X = torch.randn(32, 16, 64, 64)
y = convt(x)
y.shape

torch.Size([32, 8, 128, 128])
o=(i—-1)xs+(k—1)—2p+op+1
Others

class Autcencoder(nn.Module):
def __init_ (self):

super(Autoencoder, self)._ init_ ()

self.encoder = nn.Sequential(
nn.Conv2d(1, 16, 3, stride=2, padding=1),
nn.RelU(},
nn.Conv2d(16, 32, 3, stride=2, padding=1)},
nn.RelU(),
nn.Conv2d(32, 64, 7)

self.decoder = nn.Sequential(
nn.ConvTranspose2d(64, 32, 7),
nn.RelLU(),
nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1,output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()

def forward(self, x):
x = self.encoder(x)
¥ = self.decoder(x)
return x

def embed(self, x)
return self.encoder(x)

def decode(self, e):
return self.decode(e)
Pre-training with Autoencoders
17. Pre-training
e Autoencoders can achieve similar results as transfer learning by pretraining on large set of
unlabeled data, same type of data, just missing labels
e First train, satisfied, remove decoder with our own decoder

O Hidden Luyer
]
Uniabeled Data: i " ; : i i
= i — | — Pre-tralning Phase
R W2 wed Wgd Wl Wql
= | I 2 2
x t Rl o h e h! Xr
Input Layer!' ' Output Layer
on of the g
! :
P i Classifier
; . ‘; ; Wa: Randomly Initialized
{]
oWt w,? wet) Class 1
labeled Data: H 1™ i 1 [< Fine-tuning Phase
;) -) = Class 2
i Output
= { h3
h2
1
Input h

Self-Supervised Learning
18. Self-supervised learning with pretext tasks
e Proxy supervised tasks
- The labels are generated automatically for free
- Solving the task, requires the model to understand the content
e The challenge:
- Devising the tasks such that they enforce the model to learn robust representations

19. RotNet
e Idea: Rotate images and make the model to predict the rotation angle
e Multiclass classification with 4 classes (CE loss) with free labels being generated automatically

| Objectives:
i ConvNet | Maximize prob.
> glX, y=0) > ™ el F() > Filx")
Rotate 0 degrees J Predict O degrees rotation (y=0)

Rotated image: X"

e = ConvNet Maximize prob.
> g X y=1) |rﬂwi i 150) - Ateh

Rotate 90 degrees Predict 90 degrees rotation (v=1)
Rotated image: X'

Fah CaomyNet Maximize prob,
=2} = ¥ :
- plX o y=2 - G - = 1FL) - "[.\:"'}
Image X Rotate |80 degrees Predict 180 degrees rotation (y=2)

Reotated image: X’

! | ConvNel imi
> (X.3=3) ’% s onyNel | p Muximize prob.

model Fi.) Fi{xY

ate 270 desrec .
Rotate 270 degrees Rotated image: X* Predict 270 degrees rotation (v=3)

40

20. Contrastive Learning
e Autoencoding methods

Reconstruct input
Compute the loss in output space
Compress all the details

e Contrastive methods

Contrast pair of positive/negative samples
Compute the loss in embedding space
Compress relevant information

Requires lots of negative examples

21. SimCLR
®Supervised *SimCLR {4x)
_ g ™ xS -
b=t exp(sim(z;, 2;)/7) é: IMCLR .
] — .)
2221 L) exp(sim(z;, zi)/7) 3 70F %SimCLR e JMoCa (4x)
2 oPIRL-c2X il
- 65 *F’|F|L sicCo (2x)
Maximize ement & Rgﬁvz ol
2 agee z; 5 o} MoCo BigBIGAN
5 LA
3 . MLP &
o }I [Q() E 55 = eRotation
h; +— Representation — h; sinstDisc

25 50 100 200 400 B26
Number of Parameters (Millions)

41

Convolutional Neural Network
Motivation
1. Inductive reasoning:

e Start with an observation, leads to a possible generalization hypothesis. Valid observation may

lead to different hypotheses, some of them can be false.
2. Inductive bias

e The prior knowledge that you incorporate in the learning process that biases the learning
algorithm to choose from specific functions might result in over-fitting and learning infeasible. It
is any type of bias that a learning algorithm introduces in order to provide a prediction.

e CNNs and inductive bias: architecture-specific biases that mostly depend on data and training
procedure, mostly are locality and weight sharing translation invariance with pooling layers,
translation equivariant without them being used.

3. Downsides for using a large fully connected network

e Computation complexity grows: harder to train

e Larger capacity: more data to generalize

e Bad inductive bias: ignores geometry of image data

- Good inductive bias in this case: use all information of the image, instead of only using
some of them

e Not flexible: Different image sizes require different models

- 20*20 to 21*21, the size is bigger so the neural network needs to be scratched

Convolution Operator
4. Convolution

e Itis a mathematical operation on two functions f and g (one is the input function, the other one
is the kernel), that expresses how the shape of one is modified by the other.

o0
(F*e)nl= Y flkigln—k
k=—0c0
5. Convolution in 2D for images
e Computation
Convolution of Image I with filter kernel K
1. Multiply each pixel in range of kernel by the corresponding element of kernel
2. Sum all these products and write to a new 2d array

3. Slide kernel across all areas of the image until you reach the ends.

y[m n] = Ilm,n] * K[m,n] = Z Z! |.K[m —i,n—j]

® 2r
'!.',ﬁ g i \HT»VO\ j=—00 t=—00
Y
7 opm ol
k T l2 |3 |3 |8 K Y
4 (5 |3 |8 |a L CHE 6
2 |3 |2 |8 |e * (1|0 4] =
2 & |7 |2 |1 Ll Bl
5 -4 4 |5 (4 Tul+4n1+3x1+
1 2x04-5x04+ I+
- 143n-1420-1
=6
GRU\J TO 7 7= 1T = e Cof Tight LTI fRagh the tndh > one o down —>] w o

e Multiply by a fraction
- Blurring averages out pixel intensities in an image

1 1 1

* 191]11]|1

1 1 1

e The middle vertical line of a kernel all zeros
- Vertical edge detector

42

nv
6.

10.

1101

* |2|0]|-2

110]|-1

e The middle horizontal line of a kernel all zeros
- Horizontal edge detector

112 |1

* ojo|o

1121

e Another specific kernel
- Blob detector: regions that differ in properties, such as brightness or color, compared to
surrounding regions

0 0 3

1]

-

"2
L.
o

5 5 3

I B
”
M

(]
[2= T VR

(]
- g v P PRI]

SO S S
”
1
9 L 2

w 1 1 k2 W

»
« LA

[35 I
M

Y i
7
5]

> L ‘ae
b2 N

&
=

e Kernels
- Hand-crafted
- Classic computer vision -> multi-stage feature (kernel) engineering
Character filtering, character segmentation, character recognition
- Because you are randomizing the values initially, each kernel will convert to a different
type of feature extractor. Of don’t randomize initialization, you will have a very high
chance of learning the same feature extractor across all the currents.

lutional Neural Network
Biological Influence
e Hubel and Wiesel Cat Experiments (1958-1959)
- Individual neurons respond to stimuli only in a restricted region of the visual field known
as the receptive field
- Collection of such fields overlaps to cover the entire visual area
- Some neurons react only to images of horizontal lines, while others react line
orientations
- Higher-level neurons are based on the outputs of neighboring lower-level neurons
(High-level from low-level)
Detecting:
e The output (activation) is high if the feature is present
Feature:
e something in the image, like an edge, blob, or shape
Convolutions with learned kernels:
e share the same parameters across different locations (assuming input is stationary).
Characteristics
e Notion of proximity: logical correlations at the pixel-level
o A set of CNN kernels has less weight than a fully connected neural network that spans the
entire image (weight sharing)
- Weight sharing: Have several small kernels and connect all these outputs of the kernels
to the neurons

43

11. CNNs

MLP — Requires that we [o/ "‘
preprocess the input! i [— meveu

CLASSIFICATION

CNN- Apply convolution = ol — A H H
to image tensors. i Z L g T X ;

1
2][I
|

'

;"l"é')'i{'{i'N ,],:0 FEATURE LEARNING CLASSIFICATION
12. Forward and Backward pass
e |Initialize the kernels randomly
e Forward pass: Convolve the image with the kernel
e Backward pass: update the kernel using gradients
e |Initially randomly assigned numbers to kernel let the gradient descent update them
13. Zero Padding
e Adding zeros around the border of the image before convolution:
- Keep width and height consistent with the previous layer
- Keep the information around the border of the image
14. Stride
e Distance between two consecutive positions of the kernel:
- Allows us to control the output resolution
- e.g.: set the stride to 2 so the kernel skip two columns each time
15. Computing the output size
For each dimension of an input image with

r

., . s i L 175 MNeagd 1= ol f:;.—.r._u,;) o aoichu cMm Seppiely
e [mage dimension of size i A e AR
e Kernel of size k - 0 =[G kr/e] «]
e Padding of size p Ll L e
e Stride of size s
o g ; - i+2p—k b
'he size of output dimension is computed by: 0= T +1 o
o e |
" A Karn, I I o

16. Convolutional Neural Networks (ConvNets or CNNs)
e Reason for introducing convolutional filters into neural networks:
- We don’t have to handcraft the features
e Locally connected layers: local features in small regions of the image
e Weight sharing: detect the same local features across the entire image
e Neural network learns the kernel values (or weights)
17. CNN on RGB
e |f we have three color channels

I ‘ A
'
i
One nwmber one VodWes Der Dined , IMviensiy 0,355)
' | |
Thees Vodwes InbsTeogh one per pined for Color iMoGe
| |

d
18. Convolution on RGB input
e The depth of the kernel must match the depth of the image
e Element-wise multiplication: output will always has a depth of one
19. Detect multiple features
e Apply multiple kernels to the image in parallel at the same time, each kernel will give you a
specific feature.
The depth of the output = # of kernels you applied at the same time
example
- Pink values are weights learned by convolutional layer, everything else is input/output

S[rld? =2 ‘Output Velume (3x3x2)

Padding=1 R AETERR AL E| 2 Topth of wo Linse. tws kerne
OO e o P [B ’) 510 58 3500 I\ Resultnfadding 27
¢ 10 ofrgrgel- tE1 E1 B 100 I ‘ numbers + bias

R AR S Ui] wl[3,2,1] wifr;s,1] ofi, 1,1}
01 R L] e 5 O 1| 312 2 3 ||
o (2 5] 20 2 1 0 1§ |0 40 0 1 |
a0 0 0 0 0% A e A B A 4 2
xifitsl Of:;2vd] Wity 2]
o0 o o fofuye 1 1Y Ly i
oo 0 @0 [TlA8] | Y | Hee
G CRERE SN 1= o Vi =l A E Bl 0 ¥
B 5 ol o R B Bias b1 (1x1el)
et g BLlls,1y0]
002 e S ¢ - . : - ’ ;
e % - Bias term is often ignored in the
e, O ot o) example convolutions, but we can
13 (25 =) chl e 0 assume it's always there and adds a
@ 2 X 7 |02 QR0
o0 o0 1[FIo]0 constant to each result
B mzmme [
a0 1.0 0 o The weaphe O] thd-jarned = WRl BLiR e .I--ua:f;b

-] 1 0 0 2 0 0 = & 5 3

5 usvasy or Convolution of RGB (3-Channel) image with Filter "W0"

& TORONTO 607 010600 (Jimag

20. Convolution on RGB input example
Colour input image: 3x28x28

Convolution kernels: 5x3xBx8

Questions
L 1L deptiedy
e How many input channels are there?
e How many output channels are there?

e How many trainable weights are there?

Pooling Operator (something that reduces resolution)

21. Consolidating information
e |n a neural network with fully connected layers, we reduced the number of units before the final
output layer
- Because we want to consolidate information by compressing them (only remain the
main information). It is the function of pooling layers
- Consolidate information in a neural network with convolutional layers by:
~strided convolutions
~max pooling
~avergae pooling
22. Max pooling (High-pass filter)
e Pooling layers provide invariance to small translations of the input

45

e The kernel won'’t have values within originally, they will just pick the max number within that
size.
Single depth slice
4

2

pool with 242 fiters

SLE 78| wdwncez | 8 ik

2 _ iy
10 (a4 ¢ lsJ
3|4

-

¥
23. Average pooling:
° Compute the average value as the selected value

(previous Iayer s output)

result
(feature map)

Max pooling generally works better

24. Stride convolution:
e Shift the kernel by s (e.g. s = 2) when computing convolution
25. CNN Architecture Blueprint
e As we go deeper, the resolution or the heights and width are reduced:

- The kernel can capture a very small amount of information, if the height and width of the
image are reduced, the same kernel can capture more information at once, but the
resolution of the image will decrease since the size of the image is smaller.

e Why increase the # of kernels as going deeper:

- The kernel that is closer to the input tends to learn low-level features, because there is a
hierarchical nature to the information, we don’t have many low-level features.
Higher-level features are different combinations of low-level features, so many more
possibilities.

EI% 4’@

Pytorch implementation

CNN in PyTorch: Conv2D
CNN in PyTorch: Recall Linear

non-square kernels and uhequal stride and with padding
m = an.Convad(is, 33, (3, 5), stride=(2, 1), padding=(4, 2))

-'| luit sl
(_(nn\ulmmn al G mnusun onal
.n;, (‘un\-olunuual
layer 2 @
5 7 |V J 5
r’ el r‘r {1 : o/ |

" ; : Paalin, |..||:,

r — e]g I.\\.\rJF connected

Lispruit Ly g Layer V) it iy el e Wissng i
Punhn ke L

r‘mlln int
I‘W‘T self.convl = nn.Conv2d(in_channels = 3, || .

layer

Input layer L
’ out_channels = 7,

[kernel sizes 5, — Default—1
self.fc = nn.Linear(n, 18) intortuple = | stride =1, — DeAE
| padding = 1) ———

46

CNN in PyTorch

class LargeNet (nn.Module):
def _ init_ (self):
super (LargeNet, self)._ init_ ()
self.name = "large" R T
self.convl = nn.Conv%r,lQi, 5, 5) 1 cow lopr
self.pool = nn.MaxPool2d (2, 2)

CNN in PyTorch: MaxPool2d self comv2 = mn.Convad(ss TE Py Tad oo

self.fcl = nn.Linear(10 * § * 5, 32)
self.fc2 = nn.Linear(32,10)

Convolutioial

pooiling lo fon-porpimeic lyer Chos o btk pnd welgihe)
layer | Comvolutional 1 } |

def forward(self, x):
self.pool (F.relu(self.convl (x)))

- fayer 2
: ﬁ i |y j : x = self.pool (F.relu(self.conv2(x)))
|1 : i : :
LT | : _-,- -1 X = x.view(-1, \1{.9":_ 5__':_ .:‘f"pl figrting i1
RN T TS | x = F.relu(sel € EH GG TR o opr
Input layer Tayerd layer x = gelf.fc2(x) !
return x

self.pool = nn.MaxPool2d(kernel size = 2,
stride = 2)

LMIVERSITY OF

Visualizing convolutional filters
26. CNN filters/feature maps look like
e The first layer is usually to do all the research that people usually to do manually
e Learning with different edges
e The output is the shadow of the image
27. CNNs learn what features
e Need to build features on top of features until you get to this high-level layer

Low-Level Mid-Level High-Level_’ Trainable
Feature Feature Feature Classifier

—_—

Eoet Leoyie Trem Tiiet Toaser b/l
Pt

Saliency maps: Use gradients of the output over the input to
highlight the areas of the images which are relevant for the
classification. Smilor “fo he hear ey

1. Feed the image to the network

2. Compute the gradients back to the input image

3. “fake the' maximum value of absolute gradients across channels
4. Visualize

Unfortunately outside giving some intuition, these are not
practically very useful, and sometimes even misleading

NNs in Pre-D Learning Er.
28. LeNet
e The original CNN, first introduced by Yann LeCun in 1989
- Based on earlier “Neocognitron” (Fukushima, 1980)
e Several variants, mostly referred to LeNet-5 (above, 1998)
- 7 layers total: 2 convolutional, 2 subsampling (i.e. pooling), 3 fully-connected
e Different invariance:
- Translation invariance
- Scale invariance
- Rotation invariance
- Squeeze/stretch invariance
- Stroke width invariance
- Noise invariance
e Pytorch implementation
- Fully-connected layersc

47

Layer o

Digit image
CONV 1
CONV 2
| avg 1 avg Arc B re
5x5 Sf=2 | 5x5 . f=2
s=1 s8=2 gs=1 §=2 softma
1o labels
32x32x1 28x28x6 WX14x6 10x10X16 5X5x16 120 84
/
self.fc = nn.Linear(in_features = 5*5%16,
out_features = 120)
- Convolutional layers
Layer o
Digit image
CONV 1
= CONV 2
| awg avg Are 3 re
5x5 || f=2) 5x5 . S=2 ,
s=1 Y s=2 =1 §=2 softrmiax
10 labels
32x32x1 28x28x6 4X14x6 10X 10X 16 5X5x16 120 84
self.convl = nn.Conv2d(in_channels = 1,
B, defouts . packlina = 0 snide =] OUT_channels = 6,
' kernel_size= 5,
- stride = 1,
& TORONTO padding = @)
- pooling/subsampling layers
Layer o
Digit image
CONV1
CONV 2
avg 7 avg Fc i Fe
5x5 Sf=2 il 5x5 . f=2 B
s=1 Y s=2 s=1 s5=2 softmax
1 labels
32x32x1 28x28x6 4 X14Xx6 10X10X16 5X5x16 120 84
self.pool = nn.AvgPool2d(kernel size = 2,
. A stride = 2)
& TORONTO

class LeNet5(nn.Module):
def __init_ (self):
super(LeCun, self). init ()
self.convl = nn.Conv2d(1l, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)

LeNet-5

self.fcl = nn.Linear(5 * 5 * 16, 128)
self.fc2 = nn.Linear(120, 84) -
self.fc3 = nn.Linear(84, 10) (modern version)

def forward(self, x):

x = self.pool(F.relu(self.convl(x)))

x = self.pool(F.relu(self.conv2(x)))

X = X.view(-1, 5 * 5 * 16) R

X = F.tanh(self.fcl(x))'?;v;nu;1o}hJv»«,

x = F.tanh(self.fc2(x)) [.] : D e s
x = self.fc3(x) by . i VISR
return x

29. On the eve of deep learning
e Visual object classification
e Deformable Parts Models <- best resolutions to object classification

e CNNs are outperformed on most tasks by using hand-crafted computer vision features, and

other ML classifiers, e.g. random forests (decision trees) or SVM
30. Deformable Parts Models
e Recognize using parts and locations of parts
e Allow some deformation of part location
e Doesn’t work well for different viewing angles

Modern Architectures
31. ImageNet

ImageNet Large Scale Visual Recognition Challenge
e Pascal VOC was ~20,000 images with 20 classes (2006 - 2009)

e [mageNet was the first large-scale image dataset (14 million images)

e [LSVRC dataset based on ImageNet

1 Million training images I M AG E N E T

1000 different classes! alrplane H.!E >

50k validation, test set (never released)

e When we say ImageNet we mean ILSVRC L
cat
deer
dog
32. AlexNet
e General

e [LSVRC challenge ran from 2010.
e Like Pascal VOC, every year saw the new winner improve accuracy by ~1-2%
e (NN entry (AlexNet) in 2012 improved accuracy over previous year by ~10%

e Thisis when "Deep Learning" began

| Model Top-1 | Top-5 |
Sparse coding .’_ZJ" ErAL] ﬁﬁg]
SIFT + FVs [H] | 457% | 35.7%]
CNN) 5% | 170%

e Architecture

Input:

227x227x3 55X55X 96 27x27x96 27X27X256 13X13 x256

CONV 5

— (=09

same same same s=2
L

13x13x384 13IX13x% 384 13X 13 % 256 6X6X256 9216 4096 4096 "’f'm

e Different from LeNet-5

49

Deep Learning is differentiated from vanilla Neural Networks mostly in the changes

between LeNet-5 and AlexNet:
e Much larger training datasets (e.g. ImageNet)

e Vastincrease in compute/GPU acceleration (imagine 1989 PC vs. 2012!)
e Much larger model size/more layers, enabled by both of the above!

AlexNet Training/Architecture Improvements:

e Large number of convolutional layers (i.e. deeper model)
e lse Rel.lU activation functions instead of sigmoids
e Dropout, data augmentation
e training
e ~{0 Million parameters!
o Used GPUs to accelerate compute: 2 Nvidia GTX 580 GPUs
& 5-6 days to train over 90 epochs
o Optimized with SGD + Momentum
» Uses weight decay, dmpout& data augmentation to improve generalization

e Learning rate schedule decreased learning rate 3 times over training
33. Data Augmentation

e Apply class-preserving transformations to the input
- Increases training data

- Helps generalization by learning the internal representation of transformations

e Used by AlexNet (and all other CNNs)

e Generally, different positions, colors, and directions of the same picture

34. Generalization and Depth

e Increased depth improved generalization on ILSVRC and other tasks, but training very deep

models often failed:

- Vanishing or exploding gradients: Gradients will get smaller and smaller if you get many

small numbers in these intermediate layers
e improvements:
- Improved initialization for ReLUs
- Normalization (e.g. Batch Normalization)
- Residual connections

50

35. New model to solve this problem

L T pes fiel o oot NMbning Bloduesss L=bialaa Ly 5 b fawd+ (3lv/aun) - 1205 /dwsn)

GoogLeNet (Inceptlon)

e 2014 ILSVRC winner, 6.67% Top-5 error
© Human gets ~5.1%

e Primary motivation was to go deeper

o 22 convolutional layers
e Much more par ameter efflclent than AlexNet

o] 4 rmlllen V.S. 60 mllllon for A}exNet A Aan L
E A g pe HHY <IN

UNIVERSITY OF J

@ TORONTO by

36. Inception block
e Use 1*1 layers to compute depth, so the consecutive convolutional kernel has less depth, so
smaller number of parameters to be optimized
e Uses a mixture of 3*3, 5*5 and 7*7 filters on one layer
e Don't need large 7*7 to learn most important filters, use mostly 3*3, and add a few larger filters

,r
i m
coneanation e
ﬁ"'TT__:__ . ZH % 26 % 04

= - , - T T—— S

e | et /// 3x%3
, | CONY
14 camakiions = 3 3= 3 . i = Pevious 8 1 Channel
: | Activation T Concat
& w1 1t S
. | 20w 2 1
B i B 16

Prowaus layer con
CONV Ereen

0 % 20 % 192

w28

20 20 x 32

37. Pointwise (1*1) convolution
e Control the depth of your network in different layers
e Pixel-wise linear transformations
- Originally used in “Network-in-Network” model
e Learn to map CNN feature maps into a lower or higher dimensional space
- Good for learning compact representations/compression
e Used in all modern CNN architectures, except VGG
38. Auxiliary Loss
e Address the gradient vanishing problem -> introduce intermediate loss function
e Inception network is pretty deep -> subject to the vanishing gradient problem
e Solution -> intermediate classifiers
- Adding classifiers in the intermediate layers such that the final loss is a combination of
the intermediate losses and the final loss

51

39. VGG (Visual Geometry Group, Oxford)
e 2014 ILSVRC classification 2nd place, 7.3% Top-5 error

o However, won parallel ILSVRC localization challenge

e Proposed Models with 11,13, 16,an

d 19 layers

e Very simple architecture, easy to understand/extend

e Verylarge number of parameters: 138 Million v.s. 60 Million for AlexNet!

224+22443
22422404
H2=112%128
S6+56+256

28%28x512

UNIVERSITY O

TORONTO

/GG was a very impactful paper:

14x14=512 T=T=512
12124096 1%1%4096 1% 1x1000 121* 1000

5x5 convolution Stacked 3x3 cowvolutions
e Simple architecture made of simple 3 ” : -
stacked blocks /i k /1N 2ndconvoltian
F -\-\ Sintermiediate /
e We only need 3x%3 filters /,- Vb \ A }\\
e \ X 1 st
o Authors pointed out that stacked 3x35 | 2N B e q ol
: i IRAE T L L T T
filters can approximate any 5 40 barmed
larger-sized convolution, more | con eppemmete 3
efficiently |5 U
: 1% 3x3 conw. layer
o Since VGG almost all CNNs use 5{
i ilters!
mostly/exclusively 3x3 filters! R —
o The data augmentation used by VGG is :

very commonly used

AlexNet v.s. VGG

AlexNet
SIEE2E(IE =~ 73
B L o
43 3 33 % 3
= ST T S - S
VGGNet
| !
gz eEEEg
H 3
e »

40. Residual Networks

e Uses skip connections to provide deeper layers more direct access to signals

: Image input

Cony : Convolutional layer

Pool : Max-pooling layer

FC : Fully-connected layer

Softmax : Softmax layer

g
tEBIEEBIEBIE = a2
= = | = | = | = | =& 2
=
b b 5 8 b
- ~l - {ﬁ
9] 2 e g
@ S h & =

e ResNet won ILSVRC 2015 with 3.57% error
- The model had 152 layers
- Better than human baseline

41. Skip Connections (residual Networks)

weight layer

X
identity

normal layer:

next_activation = layer(activation)

residual layer

next_activation = activation + layer(activation)

52

42. ResNets

lf we tho resicsl Corwatiiony. M e " 1oT0 g.}mdaex\:‘i :gmd&'mvT {I‘wm ar'lf_q_".nu-i Pm\ T New fennettion 4" Globe ‘“’“2 ?”“"2

3:7[The ovas ik blothe petemes ond Pumiper

Residual Networks (ResNets) i S

ity Gige o Mot e Shime s We Choose 1o ,-?'rl-l o |anesr 'u'}—«]br o MBTULTha- &ibe Sopi i

W -

g : 3 : lz J F : 3: =il | ; —‘
PI— S A (R R {1 AR R SR
g £ il o 3l 15| 18] g Bl |24 AdSTIE 2
g : 3 ik : : 33_113‘ 3 [#
A - bl e ol = Totir fila teing thoin 17
e b R = T e teng chein refe ©

5 4 RIRE R R R R T A B T
| 3 o (312 (3 (3]2 2 ELE 8 18] 13 (5] (5] @ (e | & (3] (8] |8] |2 1
g E—p§o§+§+§ §b§b§-)1§ i Er i i i i ¢ gasbsahg S'g’r*%i
g % 2131313 (B 13 of (21 3 (3] 3] R & 3] |a al |B (3] 13 |3] |B il
3 A ODOOCOOOMEa00000M AO0000 U

! | |4) [] e] Bl &l]
@ 12 IRCINEIE « |8 (3 [8] |8 o |B] (& (& 8 & | lal |al
g Bl P b i—— g i B Pl gLl el g ghigtik]
= IE Erﬂ 3 <A 18 (3] |2 3[R R 1R = JJ

e Residual blocks (multiple convolutions with skip connections)
e Downsampling using stride 2, instead of max/avg pooling
e (lobal average pooling after last convolutional layers (introduced by
Network-in-Network)
o Means that the embedding has no spatial dimension and is only 512 floats!
e Only a single fully-connected classification layer

o learned embeddings are so good we don't need a complex classifier at end of
model

Transfer Learning
43. Learning Visual Features

e Encoder is responsible for extracting important features of an input
e If we want it to fit our small dataset:
- Delete the original classifier, freeze the weights in encoding part (stop the gradient there,
no gradient going back, only updating weights of the two fully connected layers)
Classifier steps: Map these features to the labels that you have for that past.
Two distinct parts:
- Convolutional layers: Learn filters across spatial and channel dimensions
- Fully-connected layers: learn to classify images based on the learned visual features
e Embedding: a learned lower-dimensional set of “visual features” representing the image

- This embedding encodes everything needed from the image to classify objects
D 4T TaNE T AlexNet

Input:

o it

i

27x27x096 27x27 X256 13X13x% 2

FC]
—[[|—=0 J

S—| 9216 4006 4096 P

same
13X%13% 384 13x13x 384 13x13x 256 Gx6x256

same

53

44. Transfer Learning using Embeddings
e By being trained on a large image classification dataset, CNNs learn something general about
representing images.
e We use these features to transfer our learning to a new problem:
- Train CNN 9e.g. AlexNet) on large image datasets (e.g. ImageNet)
- Remove “classification” layers at end of model, freeze remaining weights
- Add, and train, new layers at end of model suitable for our new task
45. Fine-tuning for transfer learning
e We froze the original model’s weights, used our CNN layers as a feature extractor
e Often training some/all of the original model’s weights on the new task at a lower learning rate
helps the features “adapt” to the new task
46. PyTorch implementation

e All of the models we've discussed import torchvision.models

il ; . .
(Elnd ol e') are available in alexnet= torchvision.models.alexnet(pretrained=True)

torchvision

Inception=
e We can avoid the large computatlon torchvision.models.inception.inception_v3(pretrained=True)

needed for training a state-of-the-art o
) - . vgel6é= torchvision.models.vgg.vggl6(pretrained=True)
model, and just use pre-trained vggl9= torchvision.models.vgg.vggl9(pretrained=True)
models FahEETRE
torchvision.models.resnet.resnetl18(pretrained=True)
e You can also train the models from
_ _ resnet152=
scratch with — pretrained=False torchvision.models.resnet.resnet152(pretrained=True)

e Keep this in mind for your projects! FaBtire datar=ialanet(iange)

54

Artificial Neural Networks

Neuron
1. General

. - x 1l
X, is rheinput such as a pixel in an image = ———+@ synapse

= axon from a neuron U T
i we oign, 1o ot Tt e
is the wel nt for :nput . that we leart for this [

icular input

W,
par

/

ki whm' we ra- avnnu. we fo |earn

b is the bias, a weight we learn with noinput

fis the activation function that determines how our
output changes with the sum of all weight-input
products

Y is the output such as the class an image belongs to

Activation Function
2. Activation function
e God to develop our own activation function

- It needs to have lightweight derivatives -> computationally cheap
- Suggestion: use RelLU as the default activation function

3. Linear Activation Function

/m._u‘z : Z" g 'f"fk

J

activation
function

e Bias term: if we don’t have it, the decision boundary will always pass through the origin which is

kinda limited.

The neural network automatically updates the bias term
The bias is related to the offset of the line from the origin

Problems

- Most real datasets are not linearly separable
e (y=wx +Db)is a generalized line for any dimension, known as a hyperplane, splitting the

n-dimensional input space into 2
- Given you the decision boundary

4. Early Activation Functions: Perceptrons
First artificial neurons (1943-70s) used a simple binary
activation function based on which side of the hyperplane

the input is: /,/_ B

f(z) = sign(x) Sign function
a—— R ——
0, ifz<0 &
flz) = {1 tfi z B Heaviside (unit) step ﬁm
'l[-}wu;. ™ nrmﬂr-’ dﬁw—umwlb or mostly | \\

Cowtit
This is called the de(mun boundary

Meprw thiT We connot O ﬁﬁuw timizotion

These func |ons are no %rem f wl
n Iy ﬁow. 1o Sanc .

Contifiuous. or Smoof i

5. Sigmoid Activation Function
e Saturated neurons “kill” the gradients

Wous,, We GO Whe T ‘[

- Gradients become vanishingly small very quickly away from x = 0

- The functions get saturated (gradients = 0), we will not be able to use it, since we don’t

have any signal to train it

Sigmoid activation functions were the most common before

e [Easily differentiable, smooth, continuous
*» Range between [-1, 1] or [0, 1]
There are many sigmoid functions, the most common are:
f(z) = tanh(z) Hyperbolic tangent % Paqwegn

1 0 and 1

J@) = = Logistic function

2012:

55

6. ReLU Activation Function
e Problem with original ReLU (Rectified Linear Unit) based activation functions:
- Lose half of the information on the negative side

e For Parametric ReLU and Leaky RelLU, the negative slope is being learned by your neural
network

e Can the negative slope be one?
- No. We can have any value except 1. Otherwise the function will be linear again.

ReLU(z) = (z)" = max(0,z) RelU
LeakyRELU 220
s (2) = neg&tlve_ﬂlope #x, otherwise Leaky ReLU
PReLU(z) = {x‘ e D Parametric ReLU
ax, otherwise

Training Neural Networks

How do we learn the weights (and bias) of a neural network?

Used for both training

input: x, predicted output: y, ground truth label: t, Neuron M(w;x) and inference

1. Make a prediction for some input data x, with a known correct output t

= M(wx
rowndl | " i é ii’g‘, Forward pass
2. Compare the correct output with ou: predicted Sutput to compute loss:
D:.‘,.fu;. & TwicTion To L,omfm':ﬂ.- Hha PraclicTion crf S m | with
E'= Loss(y,)

rwnol trwihe lobe] ther we howve bowt -thest dosto.
3. Adjust the weights/bias to make the prediction closer to the ground

CeEE g,
truth, i.e. minimize error J, Back\n?a.rd pass
3“ basg ongl
4. Repeatuntil we have an acceptable level of error wpolote. W

Used only for training

Loss Function
7. Loss function:

e computes how bad predictions are compared to the ground truth labels
e Large loss: the network’s prediction differs from the ground truth

e Sall loss: the network’s prediction matches the ground truth

e Calculate the error over all training samples (average error)

The Learning Curves

Loss

training

Epochs How meny times We hover Sean fhe doda,

Suppose we want to train a linear neuron to differentiate images into three classes:
_strelch pixels into single column Predicted label True label

weiivee for nawsone 1 o :
11 -96.8 cal score

02 |-05|01 20|
gl {or Neasen 3|
1513|2100

_ 32 | || 4379 | gogscore cat
) i‘- 1 ekt L | |
input image . 0'25_ D2 tha "'zl 61.95 ship score
w b flEa Wb
200 WV N 0L -
M p : i 2 kl%
4 ww{gkﬁ\., Tofa| Gnla Tate|
5 ndimrany 3 Nawdng . ont.

wrﬁ\,x:w‘mb]% TRt -
8. Softmax function:

e normalizes the logits into a categorical probability distribution over all possible classes
e Ground-truth label: Human-defined identification since we trust human’s classification

56

e One-hot encoding: Maps categories to vector representation
e Softmax function itself: the exponential of each of the inputs divided by the summation of the
exponential of all the inputs.

Linear Layer Logits p(Class)
e ™ et 4 3
® o © -96.8 Softmax(z); = SFom |00 | o<ps
: B ® — | 1379 | 097 K
® ® o 61.95 0.02 it
. LS A L% J
9. Mean Squared Error (MSE):
e mostly used for regression problems
1 y Predicted Ground
MBE = N %(y" —tn) p(Class) truth
0.01 10
Number of 3 0.97 0.0
u.ml 2 Prediction True label
training samples 0.02 0.0
MSE = (0.01-1.0)2=0.98
10. Cross Entropy (CE):
e mostly used for classification problems
#classes ey
training samples True label Pl‘l. sdliction
g~ | Predicted Ground
1 N K / / piClass) truth
= ‘j\“r‘ Z Z Ly, klog(yn I = 1 - :
n=1 k=1 0.01 10
0.97 0.0
0.02 0.0

Fivtericol Vi of wea boged "

CE = -[1.0 xlog,(0.01) +
0.0 x log (0.97) +
0.0 x log,(0.02)] = 6.64

11. Binary cross entropy (BCE)
I
BCE = _F ; [tnk’g(yn) =+ (1 - t'n)lc‘g(l - yn)}

12. Forward-Pass with Error Calculations

e MSE
import math

Ll hr Ay

[E1 .0, 31,-9.2%, ta 2 N= 4
1.8,-8.1, 8.9], ads

[1.6, 1.2, 6.1], 4 tmomp]

[1.e, 1.1, 1.5]] /

= [0% efrpih1 bel (a:wund —rwth lobede)

[e #
=[1, -1, 1] # initial weight
def simple ANN(x, w, t):
total e, e, y = 8, [], []
for n in range(len(x)):n=4
v =@

Compere. the. for d in range(len(x[@])):
prdicion v += x[n][d] * w[d] =ZWA
e e r\\y append(1/1+math,e**(-v)) /¢ Ifé, r| mo
e append ((y[n]-t[n])**2) "
total_e = sum{e)/len(x)
return (y, w, total_e)

e BCE

import math

x = [[1.

def simple ANN(x, w, t):
total e, e, y = 8, [], []
for n in range(len(x)):
v =8
for d in range(len(x[8]}):
v += x[n][d] * w[d]
y.append(1/1+math.e**(-v)} :
e.append(-t[n]*math.log(y[n])- {1 t[n]) math log(1-y[n]))
total_e = sum(e)/len(x)
return (y, w, total_e)

Gradient Descent (An algorithm from optimization)
13. Neural Network Layer (Vector, Matrices, Tensors)
e Weight matrix: Each neuron’s weight vector is a row of the weight matrix W and the input id a
column vector x
- Y=f(Wx+Db)
e How to change each of our neuron’s weights w(ji) to reduce this error E
- Know how much each weight is contributing to the loss or error -> dE/dw(ji)
- We want to find the error to increase and then change them in the opposite direction
- Relatively simple to calculate adjacent to the output layer
14. Neural Network Single-Layer Training
e Train the neural network: computing the gradient of loss with respective to each of the weights,
then changing that weight based on the value that we compute if the weight is causing higher
values of loss, we will move the opposite direction.
e Gradient: vector of partial derivatives for all weights
- Direction of the gradient is the direction in which the function increases most quickly
- Magnitude of the gradient is the rate of increase
Learning rate: a fixed number to make sure we are not very aggressively changing the weights
Adjusting weights according to the slope (gradient) will guide us the minimum (or maximum)

error
e Weight id contributing positively: reducing the loss we are going to move in the positive direction
of that.
T Error Surface
Mevir ,u. n & diresti iory thot will minimise. or !
r deguoba e (o or @rer Eat |
Lt |0k A JE 11 desaw.
w.?: J! """’fyawﬂ u, r}dwﬁ I i E E
[STl we in which direttion the. E %_miii%+w
] lobs ke i-""‘"-w""‘ﬁ‘[- | w* Wy
learning rate (step size) 0 . T Gradieat

15. Delta Rule for Single Weight/Training Sample

L Chanrutet | 4B _ (dEY (dy da
1+e= duy, dy da dury,
Iy .

s ury B _ (E’L‘;’_}_) —2y—1)

E=(y-t* [flz)=

dy dy
ry 1
. dy A=
iy = te =(1—y)(s
4‘\}) i i (in (1=w)(y)
wy A da
iy r \ y = fla) (E‘ul,, p
) \
a="Y (wpz, +b
: ? dE

9B _ o,y — (1 -)

58

16. Forward-pass and backward-pass
def simple ANN(x, w, t, iter, 1r):
total e = @
for i in range(iter):
e, y=1[1[]
for n in range(len(x)):
v =8
for d in range(len(x[8])):
v += x[n][d] * w[d]
y.append(1/1+math.e**(-v)) # sigmoid
e.append((y[n]-t[n])**2) # MSE

for‘ p in r‘ange(len(w))
= 2*x[n][p]*(y[n]-t[n])*(1-y[n])*y[n]
w[p] -= 1r*d
total_e = sum(e)/len{x)
return (y, w, e)

descent to update weights

Neural Network Architectures

17. XOR
e Needs two decision boundaries to solve
e Solution:

- Have at least one hidden neural network layer
- Limit of an infinitely wide neural network with at least one hidden layer, NN is a universal
function approximator
18. Backpropagation:
e Solving credit assignment problem
e A method that describes how to distribute errors to neurons not adjacent to the output layer

e Solution: Dynamic programing
19. Multiple Layers with Non-Linearity

ATAmmAwAprans seway wals Frawas & Tss ssasawnes awm)

narp n.r,rmr‘.h |eorre To Toke. thot Inpwt
cimansion. g mb? H 4o bome. othar

: : ; ghimansion..,
way of learning features directly and Output & We Con Wl o hmg‘

end-to-end from raw input data

Neural Networks can be viewed as a

You can use the activations of the
Feature

ayer before the last layer as

I.)u refore the last layer ib. 11 shaver
high-level features representing the _, opa ot
input data ™ ln

The goal being that the final layer is
presented with a linear separation

20. Neural Network Architecture
e Feed-Forward Network: Information only flows forward from one layer to a later layer, from the
input to the output.
Fully-Connected Network: Neurons between adjacent are fully connected
Number of Layers: number of hidden layers + output layer (Input layer is not the layer here)

/’_\~ Twe Jﬂﬁ”‘;

~ \,onr\m@fd-’
spQ) nr
()

<§<5¢>§>

oulput layer
input layer
hidden layer

2-layer neural network

e An architecture of an NN describes the neurons and their connectivity.

59

Training Artificial Neural Networks
Hyperparameters

1. General
e Different hyperparameters:
- Batch size
- Number of layers
- Layer size

Type of activation function

- Learning rate
e \Weights are updated through gradient descent (Inner loop of optimization)
e Tune hyperparameters (Outer loop of optimization)

How do we tune hyperparameters? # loqes 19T

Historie dats

N -y oy
\, chooba hypororomesfons

h Testdata -
Important paramater

Stratified Sampling without Porf nozd T2 Qo ower o
Replacement ok ilitias,

Unimportant parameter

Unimportant parameter

Optimizers
2. general
e Defining a loss function turns a learning problem into an optimization problem
e Optimizer:
- Determines, based on the value of the loss function, how each parameter (weight)
should change
- Solves the credit assighment problem: how do we assign credit to the parameters based
on how the network performs?
e PyTorch automates the gradient computation
3. Stochastic Gradient Descent (SGD)
e For each iteration evaluate a training sample from the dataset taken at random
e It allows you to do more of a global search for an optimum, results in a better set of weights for
your model
e Gradient descent on entire training data

er set of weights for your "!{Lrnr)
¢ | tane TMbge F..l,(A1) » uFd‘,;’ Mooke|
imogzse |ose d
loza ooz .rrml;?z, i)aer fimna) = '\“,c-,nPu;N, 5.“.2
Lot
74
botch (D

4. Mini-Batch Gradient Descent
e Advantages of applying batching:
e Batch size: number of training examples used per optimization “step®
- Randomly select, Batch the data, train based on the batch
- Often set the batch size to your gpu memory (number of images)
e |teration: One step
- The parameters are updated once per iteration
- A number of samples were processed before the model is updated
e Epoch: number of times all the train data is used once to update the parameters
5. Inefficient batch size
e Too small:
- Noisy
- Optimize a possibly very different function loss at each iteration
60

e Too large:
- Expensive: need to do parallel computation
- Average loss might not change very much as batch size grows
- The true gradient is not always the best gradient for optimization
i.e. some amount of noise in your gradients can help training (converge faster), larger
batch size is not always better
6. Gradient descent: N-Dimensional
e Plateaus are a problem but can be addressed using specialized variants on gradient descent
e Most points of zero gradients are saddle points
- Saddle points: The gradients are zero in one direction, non-zero in the other directions.
7. SGD with Momentum
e Ravines: areas where the surface curves much more steeply in one dimension than in another,
common around local optima.
e Problem:
- Navigating ravines: It oscillates across the slopes of the ravine
e Why momentum:
- Helps accelerate SGD in the relevant direction\
- Dampens oscillations

e Characteristics:
- The momentum term increases for dimensions whose gradients point in the same
directions
- Reduces updates for dimensions whose gradients change directions
- Analogy: We push a ball down the hill, ball becomes faster and faster until it reaches the
terminal velocity

Mor mg«ht*“

W(ﬁ cievef s LV
1 | dF
- --—z\1f l—w'd
% £ it] U-"Jt
ALE 3, li‘;;;' < uuM 9
UH'I w.. + vt

freding Thi ;';a‘; :.-,m:_:': Th ju,.,;u;v Ji

8. Adaptive Moment Estimation (Adam)
e Adaptive learning rates: Each weight has its own rate

ﬁﬂmbqﬁ fHciess Qre-chizut
Tom prioue ap Cesil R oE & r
e = Bimi + (1 —
' ;'m;rrllmlgu.:n : 1) dwj wttt = gt — _6:_ "y
2 # P Vuite

; O0E * i !

U Zf.‘llljrv:,l T (l - .82) o " in odRe o \NJI 1—“."_1 mnpr
e merduie ﬁr&iﬂ@f{‘/ Chengs- the 4o pyeid r)‘wl WS
d [eorna g ey

e Incorporates momentum and adaptive learning rate:
- Rapid convergence requires minimal tuning
- Commonly used optimizer

torch.optim. Adam (model .parameters (), 1x=0.001)
107~ |0™% To stort

61

Learning Rate
9. Learning rate:

e determines the size of the step that an optimizer takes during each iteration

e Larger step size: Make a bigger change in the parameters (weights) in each iteration
e Use small value:
- Very small parameter change
- Longer training time
e Use bigger value:
- Noisy
- Detrimental to training
e Appropriate Learning Rate depends on:

- The learning problem itself
- The optimizer
- The batch size:
Large batch -> larger learning rates
Small batch -> smaller learning rate
- The stage of training:
Reduce as training progresses

Normalization
10. Reason for normalization
e Prevent the model from paying attention to the features with larger range
e Normalize one layer:

Features

5
|
Samples

11. Batch Normalization
e |Inference time
- Keep a moving average during training and use it at inference time

Batch Norm

salures (M and S Dey ‘Normalize Scae and Shitt Batch Norm (Inference)

' ‘Scabe and shin ™
iy o= HE - |
1}
‘Maving Aversge
Hmoy, = @ftmion, + (1 — @)y
oy, = COpon, + (1— a)ay

e Normalize activations batch-wise for each layer

‘ ey e

)

[eta | [Gamma)
N A BLEN

v}

62

normedize. The, inple

Input: Values of = over a mini-batch: B = {xy _,.}: Batch
Parameters to be learned: +, & A . a
Y SO
Output: {y; = BN, s(z;)} !
[1][z][e 3
15 s 2][z][2] . [z]
P —) // mini-batch mean @ = |
m ; ' g ol[1]ls 3
L ‘g s 1|
2 2 T e N et Silzilal 31
75— — Z(T‘ 1) // mini-batch variance w s|l2]is 3]
=l ALl 1
5 T — B j | SR
T + b /{ normalize
op + €
¥i +— ¥E; + § =BN, g(xy) // scale and shift

e Advantages:
- Higher learning rate -> speed up the training
- Regularize the model
- Less sensitivity to initialization

e Disadvantages:
- Depends on batch size: no effect with small batches

- Cannot work with SGD <- only works with batch 1

12. Layer Normalization
e Applied on the neuron for a single instance across all features

e Advantages:
- Simpler to implement, no moving averages or parameters

- Not dependent on batch size

Batch

Features

z|1'|3 I= Avg vel
FEE o
Regularization

13. Regularization:
e a set of techniques that you make the training task more difficult for the model.

14. Dropout:
e forces a neural network to learn more robust features
e During training: randomly drop activations (set to zero) with probability (p)
e During inference: multiply weights by (1 - p) to keep the same distribution (as training)

15. Weight decay

W+ Wy +
T " ity
a 2 aE 9E
EW;yt) = E(W:y,)+ = || W |3 S 2 ST
(Wiyt) = E(W;y,0) + 5 | W Iz 5w = aw + W
Lrobs @ oTToPy
B!
aE
Wepr =We —v | oW, + ——
t41 1 i (a t aﬁ")

e Reason for decay:
- Lowering variance: Prevents the weight from growing too much
- Keep the model from overfitting
e Characteristics:
- Weight reduction is multiplicative and proportion to the scale of W
16. Early Stopping with Patience
e steps
- In each training iteration observe the validation loss
- As soon as validation loss starts to increase, start a counter
- If the validation loss decreases, reset the counter

63

- Otherwise, wait for fixed iterations (patience) and then stop the training

Error VBT

Validation
Brror

Error

Validation
error

Training iterations

(a) Early stopping

PyTorch Implementation
17. MNIST Dataset
& Input: 28x28 pixel image
& Output: Whether the digit is small (0, 1, 2)
output=1 means that the digit is small
output=0 means that the digit is not small

e (s this a superyised or unsupervised lear
problem?

e (): s this a regression or classiﬁﬁgrmn prohbl

18. ANN
e ANN setup

L
v

Training iterations

(b) Early stopping with
patience
Lkt = % label = 0 label = & bl = 1 labet = 9
O
labsd = 3 labsl = § labal = 3 labwl = 1 lad = &
| n
Tl L3 labal = 5 label = 3 labw| = 6 bt = 1

=
"
=
&
=

E
E
Z
i

lubel = &

- Import all the necessary modules

e ANN Architecture

Ve

tef The w,wﬁ. 1o f,ornsz. {m Nms
- witl net duo-n(z. whew G’Fﬁ?dw"g reswetty

Important for reproducing results

PyTorch: ANN Architecture

Define our neural network architecture
Inherit Cloby

L\;j AL
[DE
73] Vstanti el Ura :

-
i nemree

L % o N lrynr :
Firut lmjur b(z.anﬁ hictden Eayer
yg ¥ ¥E mr-? % bo
class nn.Linear defines a

O d-r fully-connected layer
(pwt] In1 Chonea)

I
W.dw ip-]u 'baqng heo mop o]
Lo forward() method
=l " defines how to make a
prediction o
g e .) Con opply 0 Gigpmeidh DUENATA™
g A MH w‘“'i dont s-n.u- So lowe func

W} lp.'u j_ > MWM -.\':-"fl.ere is the final sigmoid

(Fhmodel = WU o fous loqer 1 4o Yedw Lionv-lAnest 2

activation?

64

19. Loss Function and Final Activation for ANN

e You would expect to see the sigmoid activation applied to the output layer.

Indeed this would be the case if we used:

B.m‘1 Lokl IDWP‘.’P*:, |os
criterion = nﬂ-é&%ﬂ)

e Due to numerical stability, we will use:

criterion = nn.BCEWithLogitsLoss ()
DA {De. Thes pw mfwr Py the loady 3
® Applies sigmoid activation internally! implemeny +hes igmof e

weidds 4o pwoigh ww‘f.‘r
20. PyTorch load data example
Load MNIST data:

trar

PyTor ch 11&.0 hab a number ofdata 108(1(’I s to help load new data
21. Forward and Backward Pass
e Forward pass: Make a prediction

- e.g. model(input), which calls network.forward method

Information flows forward from input to output layer

Backward pass: computes gradients for making changes to weights
- e.g. loss.backward()

- Information flows backward from output to input layer
e Pytorch implementation

- Training code for binary classification problem

s{) » wmm wwar.xt, | A
~ameters()

m., (), lr=0.005, momentum=0
ﬂrn-ddq..wf dMVT

(image, lalbe L

rround e Lk Creete grawd fruth lobe
wg‘?@= t.orch E for@suabﬁ_%q?(3} reshape([l 1]) .type (torch.FloatTensor)

i
out =\pigeon(img to_ g'I—‘.-I # make prediction

fn r\'| Tbua, gmﬁ“"f wiﬁ%@u& e

parar i
grad () MiFd clean up step - important!

. MSMWFM prasiany ﬂ«faMaﬁﬂm oW Aurn.
22. PyTorch: Trainlng and Validation Error

e Assessing model performance by tracking error rate and accuracy

1) Two Hpos of @mr

lo.1]

-i-:—-----, ab=l) in mnist_ tra:m

I gmold (plgeont 'u__\l__' oL
(11is prob < 0 5 and labe ':“-,:. ro
R imzonds % 0

A 92

‘tr\gr Lo 4

rror Rate:", (GECSE/LIEH tm.n}m: trainj %‘W
nracy:", dESEETToEANEnl mn:.a‘t. tra.i.n])

We set a threshold at Replace mnist_train with mnist_val to

prob = 0.5 : N . 2
obtain error and accuracy on test
(validation) set

23. Multi-Class Classification
e Requires one-hot encoding at first
e Requires minor changes to our PyTorch implementation:
- The final output layers has as many neurons as classes
Apply the softmax activation function on the final layer to obtain class probabilities

- Use the multiclass cross-entropy loss function
e ANN Architecture multi-class
- Input size still 28*28, output size cannot be a single neuron
cla MNIST = er {nn.Module) :

cl

one output neuron for
~ each of the 10 digits

jlactivationd)

e B SR T where is the softmax activation?

model MNISTClassifier()

24. LossFunction and Softmax Activation
* You would expect to see the softmax-activation applied to the output layer. Indeed
this would be the case if we used:

nu%:u\z. log L«lnw:,ham
criterion = nn.NLLLoss ()
Due to numerical stability; we will use:

ecriterion = nn.CrossEntropyLoss()

* Applies softmax activation internally!

25. Output Probabilities

prob = F.softmax f'\‘.".i‘l'.p'.:l._., dim=1)
print (prob) |o numé for ecs Clokb
print (sum{prob[0])})
Evaluating and Debugging
26. Confusion matrix
e What your prediction is with respect to all possibilities

Hormenic Medi~

S = 3 % 120l X precision
recall + precision

Real Label

Positive Negative

’ o LTP

Positive F'olslllve * Precision = TTP TP
Predicted (FP)
Label s True

Negative BT EITTERIN ' ELT
(FI) (TN) Hoarmeonic PNS
"y TP+ TN
Recall = ST N Ay = S TP ¥ PP PN TN

27. MNIST 2D Visualization
MNIST 2D Visualization . e oo

t-5NE for 2D projection and

AR

visualization of data structure
Q Toke wr octivations
(N unde Ty o sl

QQQ et @

28. Debugging NN

e Make sure your model can overfit
Make sure you can get loss to decrease wurt training data

e Make sure that your network is training: i.e. loss is going down.
o Sanity check!
e Ensures that you are using the right variable names, and rule out other
programming bugs that are difficult to discern from architecture issues.
e Confusion Matrix

o True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN)

e 2D Projections of Data
o PCA, t-SNE

67

Introduction to Artificial Intelligence
Al
Reason for developing: reproduce human intelligence with machines
Captures the notion of developing computer systems that can perform tasks normally only
human could
Statistics -> ML -> Al
Symbolic Approach:
- Dominated the early days of Al
Like the knowledge of an adult
Construct well-defined discrete symbols
Too abstract to generalize to real-world
Input: data and program, output: result
e Connectionist Approach
- Dominated Al since2012
- Simulate how a baby learns
- Input: data and result, output: program
- Requires large-scale data and compute
e Fields of Deep Learning
- ML
- Computer vision
- NLP
Machine Learning
e Formal Definition (Mitchell et al. 1997):
Learn from experience (E) with respect to some class of tasks (T) and performance measure (P)
Performance at tasks in (T), as measured by (P), improves with experience (E)
e |t enables computers to learn from data, avoid tons of hard coding
e Reason for need:
- Human-generated results will not encounter some counter-example, difficult-to-formulate
rules that cover all the conditions
- We need high-dimensional input space, hard to understand, and must first learn easier
representations
Deep Learning
e Latest version of ANN, or connectionism an old ML method
e Formal definition (LeCun et al. 2015):
- Asubset of ML
- Allows multiple levels of representation, obtained by composing simple but non-linear
modules that each transform the representation at one level (starting with the raw input),
into a representation at a higher, slightly more abstract level.
History of Deep Learning

1st 2nd
Beginnings Neural Neural GEP_U
Winter Winter =

Thresholded
Logic Unit

68

5. Terminology Summary
Artificial Intelligence (AI): broad & poorly defined
concept of developing computer systems that can
perform tasks normally only humans could do
Machine Learning (ML): computers learn by
example, from data, rather than being explicitly
programmed, to solve a task

Deep Learning (DL) : A machine learning method
that learns multiple levels of abstractions over
data end-to-end
6. Deep Learning applications
Machine Translation
Drug Discovery
Speech Recognition
Image Generation
Alpha Fold
AlphaGo
Mathematics
Code Generation
Language Modelling
e Simulators
7. Deep Learning Caveats
e Interpretability
e Adversarial examples
e Causality
- Causality: Relationship between cause and effect (A5 ZB)
- Correlation: Association between two variables (A#1BH %8k, (EATE S EBHERER)
e Fairness & Bias
8. Bias
e Problems in the collection of training data:
- A binary classification problem where most of the data comes from one class
- Data not representing the population
9. Machine Learning Basis
e Supervised Learning
- Regression (real-valued or continuous value) or Classification (categorical or 1 of N)
- Requires data with ground-truth labels/outputs
e Unsupervised Learning
- Self-supervised learning, Semi-supervised learning
- Requires observations without human annotations
e Reinforcement Learning
- Sparse rewards from the environment
- Actions affect the environment (dynamic nature)
10. Supervised Learning
Supervised Learning

Muodel learns to maps an input to an output based on example input-output pairs.
Much like a teacher guides a student, but with many more examples

Examples:
e Age prediction given a headshot:
Input: headshot image
Output: person’s age
e Sentiment classification given a tweet:
Input: tweet text

Output: whether the tweet is happy or sad

69

11. Inductive bias (learning bias):
e the set of assumptions that used for modeling.
12. Mean Squared Error (MSE):
e measures how close a regression line is to a set of data points
13. Error and loss
e Need a way to quantify model performance
- Minimum error from our fit
e Optimize a metric
- Proxy called a loss
14. Bias versus Variance Tradeoff
e Greater model complexity higher variance and chance of over-fitting

- Over-fittingld #1 &': occurs when a statistical model fits exactly against its training data.

e Lower model complexity leads to higher bias and under-fitting
- Under-fittingR#1&: A data model is unable to capture the relationship between the
input and output variables accurately, generating a high error rate on both set and
unseen data.
15. Training and Testing Data
e Mode data -> better model
e If testing data is the same as training data -> over-fitting
16. Validation and Holdout Data
e Split data into train, val, test
e Train on training, tun hyper-parameters on validation, evaluate sparingly on test set (holdout
data)
- Tune: the process of tuning the parameters present as the tuples while we build ML
models.

70

